Так как в графе есть хотя бы одна вершина степени 5, есть хотя бы одна компонента с вершиной данной степени. Рассмотрим её. Кроме вершины степени 5 в этой компоненте не менее 5 вершин. Значит, в компоненте связности с вершиной степени 5 не менее шести вершин. Аналогично, в компоненте связности с вершиной степени 2 не менее трёх вершин. Значит, компонент не более 1 + (18 - 6) : 3 = 5.
Докажем, что любое количество компонент от 1 до 5 быть может. Сперва построим пример для 5 компонент. Пусть в одной компоненте две вершины степени 5 соединены ребром, а остальные вершины - вершины степени 2, присоединённые к обоим. Итого 6 вершин на одну компоненту. Остальные компоненты связности представлены циклами длины 3 из вершин степени 2.
Если требуется от 2 до 4 компонент, "склеим" две компоненты-цикла в одну, увеличив цикл.
Если требуется одна компонента, построим компоненту из шести вершин по примеру выше, а затем вместо ребра, соединяющего вершины степени 5, проложим путь из вершин степени 2.
ответ: От 1 до 5.
(P.S. Но это если граф обыкновенный, а в графе с петлями и кратными рёбрами можно устроить от 1 до 17 компонент.)
№ 1. 100,7
№ 2. 6,5
Пошаговое объяснение:
№ 1. 1) 469,7/15,4 = 30,5
2) 30,5+9,52 = 40,02
3) 40,02*1,5 = 60,03
4) 161 - 60,3 = 100,7
№ 2. 14+6,2а+2,4а=69,9
8,6а+14=69,9
8,6а = 69,9-14
8,6а = 55,9
а = 55,9/8,6
а = 6,5