всего в 3-х ящ 69 кг
в каждом --- ? кг, но разная ,> 20 и <30
в 3-ем макс --- ? кг
Решение.
Чтобы в третьем ящике была максимальная масса, надо, чтобы впервых двух была минимально возможная. По условию она не может быть меньше 20 кг, причем, масса не одинаковая.
20 * 3 = 60 (кг) находилось бы в ящиках, если бы во всех трех была масса, равная 20 кг
69 - 60 = 9 (кг) находится дополнительно в ящиках, так как по условию в каждом больше 20 кг
Наименьшее целое число, которое можно добавить в один из ящиков - это 1 кг, тогда во второй нужно добавить 2 кг.
1 + 2 = 3 (кг) нужно добавить в первый и второй ящик вместе
9 - 3 = 6 (кг) --- добавляем в третий ящик
20 + 6 = 26 (кг) максимально возможная масса яблок в третьем ящике.
ответ: 26 кг
1 - найти середину ВС - точку К.
2 - Найти уравнение прямой ВС.
3 - найти уравнение перпендикуляра к ВС в точке К.
4 - найти точку пересечения перпендикуляра с осями Ох и Оу.
1) К(х) = (3,2+0,5)/2 = 1,85.
К(у) = (4-1)/2 = 1,5.
2) ВС: (х-3,2)/(0,5-3,2) = (у-4)/(-1-4).
ВС: (х-3,2)/(-2,7) = (у-4)/(-5) это уравнение в каноническом виде. Из этого уравнения получаем направляющий вектор прямой ВС: n(BC) = (-2,7; -5).
Преобразуем каноническое уравнение в уравнение общего вида:
ВС = -5х+16=-2,7у+10,8.
ВС = -5х-2,7у+5,2 = 0.
3) Прямая ЕД, проходящая через точку К(x1; y1) и перпендикулярная прямой Ax+By+C=0, представляется уравнениемA(y-y1)-B(x-x1)=0.
Подставляем значения коэффициентов:
-5(у-1,5)-2,7(х-1,85) = 0.
-5у+7,5-2,7х+4,995 = 0.
Получаем уравнение прямой ЕД: -2,7х-5у+12,495 = 0.
4) Пересечение прямой ЕД:
- с осью Оу. х = 0, у = 12,495/5 = 2,499.
- с осью Ох. у = 0, х = 12,495/2,7 = 4.627778.