1) найдите дифференциал функции у=cos ^3x dy=y' *dx = 3cosx*(-sinx)dx =(-3cosx*sinx)dx =(-3/2sin2x)dx 2) у=корень(2-х^2) dy =y' *dx = (1/2)(2-x^2)^(-1/2)*(-2x)*dx = (-x/корень(2-x^2))dx или если функция y=корень(2)-x^2 dy = y' *dx = -2xdx 3. решить уравнение 3^(x+2) +9^(x+1) -810=0 9*3^x+9*9^x-810=0 3^x+3^(2x)-90=0 замена переменных 3^x=y y^2+y-90=0 d=1+ 360 =361 y1=(1-19)/2 =-9 ( не может быть так как 3^x не может быть отрицательным) y2=(1+19)/2 =10 найдем х 3^x =10 x=log_3(10)=ln10/ln3 = 2,1
Чтобы решить эту задачу, нам понадобятся знания о свойствах вписанной окружности и формуле площади треугольника.
Согласно свойству вписанной окружности, любая прямая, проведенная из вершины треугольника к точке касания окружности с стороной, делит эту сторону на две части, длины которых являются хордами окружности. В нашем случае, такая прямая будет проходить через точку C и делить сторону AB на две равные части длиной 7.5 см каждая.
Мы можем обозначить длины сторон треугольника как AB = 15 см, AC = 7.5 см и BC = 7.5 см. Теперь мы можем использовать формулу полупериметра треугольника и радиус вписанной окружности, чтобы найти площадь треугольника.
Полупериметр треугольника вычисляется по формуле s = (AB + AC + BC) / 2. В нашем случае s = (15 + 7.5 + 7.5) / 2 = 15 см.
Формула площади треугольника через полупериметр и радиус вписанной окружности имеет вид S = sqrt(s * (s - AB) * (s - AC) * (s - BC)), где sqrt обозначает квадратный корень.