Подозреваю, что ошибка в условии и должно быть |M-N|. Если ошибки нет, то, разумеется M=0 и все слишком очевидно.
Итак, |M-N| минимально, когда прямоугольников обоих типов поровну. Но это невозможно, т. к. площадь в 3000 клеток нельзя покрыть кусками по 4+5=9 клеток.
Удобно считать прямоугольники парами: в пару входит один прямоугольник 1×4 и один 1×5.
Итак, очевидно, таких пар должно быть как можно больше. Сколько же? 3000 клеток парами не покрыть, покрыть можно (теоретически) только 2997 клеток, т. к. 2997 делится на 9. Но 3 остаются, их не покрыть.
Уменьшим число пар на 1. Тогда ими можно покрыть... Дальше попробуйте додумать сами.
Рассмотрим число : нам нужно определить, на какую цифру заканчивается это число.выпишем последние цифры степеней двойки: =1, =4, =8, =16 (берем последнюю цифру и умножаем на 2), = 6*2=12 и т.д они будут чередоваться в такой последовательности: 2, 4, 8, последняя цифра степени зависит от того, с каким остатком показатель степени делится на 4. (например, 1, 5, 2013) ⇒ ⇒последняя цифра числа =3 возьмем число -1: оно будет заканчиваться на 2 (3-1) ⇒ ⇒ это число составное, т.к. будет делиться не только на само себя и 1, но и на 2 (по признаку делимости на 2)
Пошаговое объяснение:
3х-6х-15•х=7
2х-15=7
2х=7+15
2х=22
х=22:2
х=11