всего 576 таких чисел.
1) обозначим первую цифру через x, она не может быть нулем, поэтому возможно 9 вариантов выбора
2) другую цифру обозначим через y, ее тоже можно выбирать она может быть нулем, но не может быть равна x)
3) нужно отдельно рассмотреть три случая: xy··, xxy· и xxx·; для каждого из этих случаев нужно подсчитать количество вариантов и эти числа сложить
4)в варианте xy·· две последних цифры могут быть (независимо друг от друга) выбраны равными x или y (по 2 варианта выбора)
поэтому всего получаем 9·9·2·2 = 324 варианта
5)в варианте xxy· последняя цифра может быть равна только x или y (2 варианта)
поэтому всего получаем 9·1·9·2 = 162 варианта
6)в варианте xxx· последняя цифра может быть любой (10 вариантов)
поэтому всего получаем 9·1·1·10 = 90 вариантов
7) общее количество вариантов равно сумме
324 + 162 + 90 = 576
Всю эту работу можно нарисовать с таблицы, но если нужен просто ответ- то 576 чисел
всего 576 таких чисел.
1) обозначим первую цифру через x, она не может быть нулем, поэтому возможно 9 вариантов выбора
2) другую цифру обозначим через y, ее тоже можно выбирать она может быть нулем, но не может быть равна x)
3) нужно отдельно рассмотреть три случая: xy··, xxy· и xxx·; для каждого из этих случаев нужно подсчитать количество вариантов и эти числа сложить
4)в варианте xy·· две последних цифры могут быть (независимо друг от друга) выбраны равными x или y (по 2 варианта выбора)
поэтому всего получаем 9·9·2·2 = 324 варианта
5)в варианте xxy· последняя цифра может быть равна только x или y (2 варианта)
поэтому всего получаем 9·1·9·2 = 162 варианта
6)в варианте xxx· последняя цифра может быть любой (10 вариантов)
поэтому всего получаем 9·1·1·10 = 90 вариантов
7) общее количество вариантов равно сумме
324 + 162 + 90 = 576
Всю эту работу можно нарисовать с таблицы, но если нужен просто ответ- то 576 чисел
Пошаговое объяснение:
Для решения задачи каждую сторону параллелепипеда надо разделить нацело на части по 10 см.
a = 2 м = 200 см
m = 200 : 10 = 20 - по высоте
b = 68 cм
n = 68 : 10 = 6 (ост. 8) - по ширине
c =
k = 88 4/17 : 10 = 8 (ост. 8 4/17) - в глубину.
Всего кубиков по 10 см.
N = m*n*k = 20*6*8 = 960 шт - всего - ответ.