a)15cosx=3cosx·(0,2)–sinx;
15cosx=(3·5)cosx=3cosx·5cosx;
(0,2)–sinx=(1/5)–sinx=(5–1)–sinx=5sinx;
уравнение принимает вид:
3cosx·5cosx=3cosx·5sinx;
3cosx > 0
5cosx=5sinx
cosx=sinx
tgx=1
x=(π/4)+πk, k∈z
б) чтобы найти корни, принадлежащие отрезку [–3π; –3π/2] рассмотрим неравенства.
–3π ≤ (π/4)+πk ≤ –3π/2, k∈z
–3 ≤ (1/4)+k ≤ –3/2, k∈z
–3 целых 1/4 ≤ k ≤ (1/4)–(3/2), k∈z
–3 целых 1/4 ≤ k ≤ (–5/4), k∈z
неравенству удовлетворяют k=–3 и k=–2
при k=–3
x=(π/4)–3π=–11π/4
при k=–2
x=(π/4)–2π=–7π/4
о т в е т. а)(π/4)+πk, k∈z; б) –11π/4; –7π/4.
Рассмотрим все пятицифровые наборы, которые заканчиваются четной цифрой {0,2,4}. Последнюю цифру выбираем 3-мя предпоследнюю - 4-мя, третью - 3-мя, вторую - 2-мя, первую - одним, итого 1⋅2⋅3⋅4⋅3=72. Среди этих наборов запрещенными есть наборы, начинающиеся с нуля, т.е. 0∗∗∗∗. Первая цифра выбрана (одним последнюю цифру выбираем 2-мя из {2,4}. Уже выбраны две цифры, осталось три, поэтому вторую выбираем тремя третью цифру - двумя четвертую - одним, имеем 1⋅3⋅2⋅1⋅2=12. Итого 72−12=60 чисел, удовлетворяющих условию задачи.
Пошаговое объяснение:
0
Пошаговое объяснение:
х-абцисса
у-ордината