М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
Polina28548
Polina28548
29.01.2022 08:40 •  Математика

Выполните у выражение x+4/x-3×3x-9/x^2+8x+16÷15/xy+4y
2) выполните действие
(3/2x-1÷3x-1/4x^2-1-6/3x-1)×3/2x-1+(3x-1/3x-10)-1

👇
Открыть все ответы
Ответ:
Kukushka2281337
Kukushka2281337
29.01.2022

ответ:

удастся помешать

пошаговое объяснение:

при выборе произвольного числа n и последующем действии в итоге могут быть получены числа n-1 или n+1, так как они отличаются на 2, а целью собаки является получить число кратное 4, то свинья любое произвольное единичное число может превратить в не кратное 4.

минимальное число чисел которое может задать собака для получения числа кратного 4 является два. это должны быть числа 4*z1 - 1 и 4*z2 + 1 (где z1 и z2 - целые числа). в этом случае как при увеличении, так и при уменьшении на 1, одно из чисел становится кратным 4.

в любой последовательности чисел с четным количеством членов не более половины может быть после действия свиньи кратным 4 (если свинья не поддается), в случае нечетного количества членов, свинья может выбрать действие, которое превращает в не кратные 4 больше половины членов ряда (можно разделить ряд на пары + 1 число и потом произвести над ними одно и то же действие так, что не более одного числа в паре станет кратным 4, а единичное число не будет кратно 4).

в итоге из произвольного ряда чисел (после действия свиньи) кратных 4 может быть получено не более n/2 для рядов с четным количеством членов и не более (n-1)/2 для рядов с нечетным количеством членов

таким образом максимальное количество чисел, кратных 4, которые может получить собака будет равно (2019-1)/2 = 1009

4,6(4 оценок)
Ответ:
daallantin
daallantin
29.01.2022

Посчитаем, сколько всего равновероятных взятия двух горшков. Для этого пронумеруем горшки от 1 до 5. Сколькими можно взять два из них? По законам комбинаторики, 10. Вот они:

1. 1 и 2

2. 1 и 3

3. 1 и 4

4. 1 и 5

5. 2 и 3

6. 2 и 4

7. 2 и 5

8. 3 и 4

9. 3 и 5

10. 4 и 5

Итак мы выяснили, что всего возможны десять случаев взятия горшков. Среди них только в одном случае Винни Пух останется голодным - если он возьмёт два пустых горшка. В остальных девяти из десяти случаев Винни не останется голодным.

Значит вероятность 9/10

4,8(68 оценок)
Это интересно:
Новые ответы от MOGZ: Математика
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ