Посчитаем, сколько всего равновероятных взятия двух горшков. Для этого пронумеруем горшки от 1 до 5. Сколькими можно взять два из них? По законам комбинаторики, 10. Вот они:
1. 1 и 2
2. 1 и 3
3. 1 и 4
4. 1 и 5
5. 2 и 3
6. 2 и 4
7. 2 и 5
8. 3 и 4
9. 3 и 5
10. 4 и 5
Итак мы выяснили, что всего возможны десять случаев взятия горшков. Среди них только в одном случае Винни Пух останется голодным - если он возьмёт два пустых горшка. В остальных девяти из десяти случаев Винни не останется голодным.
Значит вероятность 9/10
ответ:
удастся помешать
пошаговое объяснение:
при выборе произвольного числа n и последующем действии в итоге могут быть получены числа n-1 или n+1, так как они отличаются на 2, а целью собаки является получить число кратное 4, то свинья любое произвольное единичное число может превратить в не кратное 4.
минимальное число чисел которое может задать собака для получения числа кратного 4 является два. это должны быть числа 4*z1 - 1 и 4*z2 + 1 (где z1 и z2 - целые числа). в этом случае как при увеличении, так и при уменьшении на 1, одно из чисел становится кратным 4.
в любой последовательности чисел с четным количеством членов не более половины может быть после действия свиньи кратным 4 (если свинья не поддается), в случае нечетного количества членов, свинья может выбрать действие, которое превращает в не кратные 4 больше половины членов ряда (можно разделить ряд на пары + 1 число и потом произвести над ними одно и то же действие так, что не более одного числа в паре станет кратным 4, а единичное число не будет кратно 4).
в итоге из произвольного ряда чисел (после действия свиньи) кратных 4 может быть получено не более n/2 для рядов с четным количеством членов и не более (n-1)/2 для рядов с нечетным количеством членов
таким образом максимальное количество чисел, кратных 4, которые может получить собака будет равно (2019-1)/2 = 1009