Пусть первая цифра а, третья с. Тогда вторая (а + с) / 2. Само число 100а + (а + с) / 2 * 10 + с = 105а + 6с. 102а + 6с делится на 6, поэтому вычтем это. Остается 3а. Так как остаток не нулевой, а - нечетно, и остаток 3а равен 3. Теперь из числа вычтем 99а, так как это делится на 11. Получим 6а + 6с = 6(а + с) = 12 (а + с) / 2. Так как (а + с) / 2 целое число, вычтем 11 (а + с) / 2. Получаем (а + с) / 2 - 3 делится на 11. Но (а + с) / 2 меньше 10, поэтому принимает единственное подходящее значение 6 ((а + с) / 2 - 3 = 0). Тогда получаем три случая: а = 1, с = 5, число 135 а = 3, с = 3, число 333 а = 5, с = 1, число 531 Это все числа, удовлетворяющие условиям
Действие возведения в квадрат – точно соответствует нахождению площади квадрата со стороной, длина которой равна числу, возводимому в квадрат. Ну, например, мы хотим возвести в квадрат понятно, что но мы не будем сразу возводить в квадрат, а попробуем разобраться в этом графически. Взглянем на рисунок (приложен к объяснению)
Как мы видим, если мы сложим только (это зелёный квадрат) и (это оранжевый квадрат), то мы не получим площадь квадрата со стороной Чтобы получить правильную сумму необходимо прибавить ещё два жёлтых прямоугольника с площадями
Тогда получиться, что:
;
Ну и так же легко проверить, что:
;
А вот: потому: ;
Если бы мы проводили такие рассуждения не для и а для каких-то любых и то получилось бы всё аналогично:
;
Итак: ;
Тоже самое можно доказать и аналитически (алгебраически), если предварительно обозначить как :
;
Если вы всё уловили, то вам не сложно будет доказать аналитически, что:
;
Для разности тоже можно изобразить иллюстрацию с площадями, но она получится более путанной и в ней тяжелее разобраться, чем доказывать разность аналитически. Но разобраться можно, и она, конечно же, полностью соответствует формулам, представленным выше.
Для вашей конкретной ситуации получим:
;
;
Но вообще, я бы рекомендовала, решать данную задачу совсем через другую формулу!
Есть такая формула формула [2] ;
Это легко доказать так
;
Так что, теперь воспользуемся формулой [2] в вашем случае и получим:
;
;
Обозначим и тогда:
;
Значит: что возможно только если выражение в скобках равна нулю, т.е.:
Пошаговое объяснение:
V=(h/3)πr²
V=(12:3)π*5²=4π*25=4*3,14*25= 314 см³
Sпол.=πr(r+√r²+h²)
Sпол=3,14*5(5+√25+144)=15,7(5+√169)=15,7(5+13)=15,7*18=282,6 см²