Наибольший результат получим, если числа KAN и GA будет как можно больше, а число ROO как можно меньше.
Начнем с чисел KAN и GA: K=9 как цифра в самом старшем разряде. Далее цифрам А и G необходимо присвоить значения 8 и 7, причем именно в таком порядке, поскольку А встретится еще раз в разряде единиц, поэтому нам выгодно присвоить ей наибольшее значение. Последняя цифра N=6.
Для числа ROO поступим наоборот: старшем разряду присвоим наименьшее возможное значение: R=1, далее O=2.
Итого: 986+78-122=942
ответ: 942
Пусть a, b, c - первые три члена арифметической прогрессии, тогда по условию:
а + b + с = 15 [1]
По свойству арифметической прогрессии:
b - а = с - b
2b = а + с подставим в уравнение [1], получим:
2b + b = 15
3b = 15
b = 5 - второй член арифметической прогрессии.
Тогда сумма первого и третьего членов:
а + с = 15 - 5
а + с = 10 ⇒ c = 10 - a
Переходим к геометрической прогрессии. По условию:
первый член = а + 1
второй член = b + 3 = 5 + 3 = 8
третий член = с + 9 = 10 - a + 9 = 19 - a
По свойству геометрической прогрессии:
не удовл.условию, так как искомая геометрическая прогрессия возрастающая.
Получили а = 3, тогда с = 10 - а = 10 - 3 = 7
Итак, первые три члена арифметической прогрессии: 3; 5; 7.
Найдем три первых члена геометрической прогрессии:
первый член = а + 1 = 3 + 1 = 4
второй член = 8
третий член = с + 9 = 7 + 9 = 16
Искомая геометрическая прогрессия: 4; 8; 16; ...
Найдем сумму 7 первых членов.
b₁ = 4 - первый член
q = b₂/b₁ = 8/4 = 2 - знаменатель прогрессии
Искомая сумма:
ответ: 508
3a - 5b + 24 = 0
3a + 24 = 5b
5b = 3a + 24
b = (3a+24)/5
b =