180
Пошаговое объяснение:
435/3=145
105/3=35
145+35=180
Все модели делим на три группы A9, B9 и C9 по 9.
1-взвешивание. Взвешиваем A9 и B9. Если A9<B9, то лёгкая модель в A9. Если A9>B9, то лёгкая модель в B9. Если A9=B9, то лёгкая модель в C9.
Берем группу с лёгкой моделью и делим её на три группы A3, B3 и C3 по 3.
2-взвешивание. Взвешиваем A3 и B3. Если A3<B3, то лёгкая модель в A3. Если A3>B3, то лёгкая модель в B3. Если A3=B3, то лёгкая модель в C3.
Берем группу с лёгкой моделью и делим её на три группы A1, B1 и C1 по 1.
3-взвешивание. Взвешиваем A1 и B1. Если A1<B1, то лёгкая модель A1. Если A1>B1, то лёгкая модель B1. Если A1=B1, то лёгкая модель C1.
В решении.
Пошаговое объяснение:
1) |5-2х|<-10
↓
5 - 2х < -10 5 - 2x > 10
-2х < -10 - 5 -2х > 10 - 5
-2х < -15 -2x > 5
2x > 15 2x < -5 знак неравенства меняется при делении на минус;
x₁ > 7,5; x₂ < -2,5.
Но х₁ не удовлетворяет второму неравенству, а х₂ не удовлетворяет первому неравенству.
Данное неравенство не имеет решения.
2) |х+2|<3
↓
х + 2 < 3 x + 2 > -3
x < 3 - 2 x > -3 - 2
x₁ < 1; x₂ > -5;
Решения неравенства: х∈(-5; 1).
Неравенство строгое, скобки круглые.
3) |1-2х|≤5
↓
1 - 2х <= 5 1 - 2x >= -5
-2x <= 5 - 1 -2x >= -5 - 1
-2x <= 4 -2x >= -6
2x >= -4 2x <= 6 знак неравенства меняется при делении на минус;
x₁ >= -2; x₂ <= 3;
Решения неравенства: х∈[-2; 3].
Неравенство нестрогое, скобки квадратные.
4) |4х-3|>10
↓
4x - 3 > 10 4x - 3 < -10
4x > 10 + 3 4x < -10 + 3
4x > 13 4x < -7
x₁ > 13/4; x₂ < -7/4;
Решения неравенства: х∈(-∞; -7/4)∪(13/4; +∞).
Неравенство строгое, скобки круглые.
5) |-х+1|>-2,1
↓
-х + 1 > -2,1 -x + 1 < 2,1
-x > -2,1 - 1 -x < 2,1 - 1
-x > -3,1 -x < 1,1
x₁ < 3,1; x₂ > -1,1; знак неравенства меняется при делении на минус;
Решения неравенства: х∈(-1,1; 3,1).
Неравенство строгое, скобки круглые.
180
Пошаговое объяснение:
Проверяем:
-435 + 180 = - 255
-255 + 180 = - 75
-75 + 180 = 105