1. 10 м
2. 5 м
3. 60 м
Пошаговое объяснение:
S = 4S(полукруга)+S(квадрата)
Пусть 2a - длина стороны квадрата, тогда радиус полукруга в 2 раза меньше и равен а.
S(полукруга) = *r^2/2, где r - радиус полукруга.
4S(полукруга) = 4*а^2/2 = 2*а^2
S(квадрата) = (2a)^2 = 4a^2
Общая площадь S = 4S(полукруга)+S(квадрата) = 2*а^2 + 4a^2 =
= 6a^2 + 4a^2 = 10a^2 = 250 м²
Тогда а = 5 м - длина радиуса полукруга
2а = 10 м - длина стороны квадрата
Забор состоит из 4 полукругов, значит, его длина
4*2r/2 = 4r = 4a = 4*3*5 = 60 м
1. Числа, используемые при счёте.
2. Часть отрезка, ограниченная двумя точками.
4. Переместительный (коммутативный) закон сложения: m + n = n + m . Сумма не меняется от перестановки её слагаемых.
Переместительный (коммутативный) закон умножения: m · n = n · m . Произведение не меняется от перестановки его сомножителей.
Сочетательный (ассоциативный) закон сложения: ( m + n ) + k = m + ( n + k ) = m + n + k . Сумма не зависит от группировки её слагаемых.
Сочетательный (ассоциативный) закон умножения: ( m · n ) · k = m · ( n · k ) = m · n · k . Произведение не зависит от группировки его сомножителей.
Распределительный (дистрибутивный) закон умножения относительно сложения: ( m + n ) · k = m · k + n · k .
5. (a+b)*c=a*c+b*c
6. Уравнение – это равенство, содержащее одну или несколько переменных.
7. Вычислить значение перемннной.
11. Приводим к одному знаменателю. У какой дроби числитель больше числителя другой дроби, та и больше.
15. Работаем с числителями.