В третьей урне будет 2 шара. Введем гипотезы: H1 - в 3 урне 2 белых шара, H2 - в 3 урне 2 черных шара, H3 - в 3 урне черный и белый шары. Посчитаем вероятности гипотез: p(H1) = (2/5)*(4/6) = 4/15 p(H2) = (3/5)*(2/6) = 1/5 p(H3) = (2/5)*(2/6)+(3/5)*(4/6) = 8/15 Сумма вероятностей гипотез должна равнять 1: 4/15+1/5+8/15 = 1 Событие A заключается в том что из 3 урны достали белый шар. Посчитаем условные вероятности p(A|H1) = 1, из двух белых выбирают белый p(A|H2) = 0, из двух черных выбирает белый p(A|H3) = 1/2, из черного и белого выбирают белый Полная вероятность события A: p(A) = p(H1)*p(A|H1) + p(H2)*p(A|H2) + p(H3)*p(A|H3) = (4/15)*1 + (1/5)*0 + (8/15)*(1/2) = 8/15 ответ: 8/15
A(-3;1) 1=k*(-3)+b B(-2;4), 4=k*(-2)+b система уравнений: {-3k+b=1 {b=1+3k {b=1+3k {b=4 -2k+b=4 -2k+1+3k=4 k=1 k=1 y=1*x+4 уравнение прямой, проходящей через точки А и В угловой коэффициент k=1
3. {y=x {y=x {y=x {y=1 2x+3y-5=0 2x+3x-5=0 x=1 x=1 ответ: прямые у=х и 2х+3у-5=0 пересекаются в точке (1;1) 4. 2x-5y=7, 5y=-2x+7, y=(-2/5)x+7/5. y=-0,4x+1,4. k=-0,4
прямые параллельные, если угловые коэффициенты равны А(-5;4) у=kx+b. 4=-0,4*(-5)+b. b=2 уравнение прямой параллельной прямой 2х-5у=7: у=-0,4x+2
ответ:BCA
Пошаговое объяснение: