М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
амир295
амир295
29.12.2020 18:42 •  Математика

1. 5 212 036 – (28 175 : 35 + 403 ∙ 208 – 1 242 : 18) ∙ 7 =

👇
Ответ:
gavul79
gavul79
29.12.2020

151026/125,1208 26/125

Пошаговое объяснение:

4,7(70 оценок)
Ответ:
vvv76
vvv76
29.12.2020

4620116

Пошаговое объяснение:

5 212 036 – (28 175 : 35 + 403 ∙ 208 – 1 242 : 18) ∙ 7

1)28 175 : 35=805

2)403 ∙ 208=83824

3) 1242 : 18=69

4)805+83824-69=84560

5)84560*7=591920

6)5212036-591920=4620116

4,4(63 оценок)
Открыть все ответы
Ответ:
LoveSmile78900987
LoveSmile78900987
29.12.2020
Можно найти несколько пределов данной числовой последовательности. Для этого нужно посмотреть, что произойдет с ней при стремлении к бесконечности с разными знаками, и в "опасных" точках. 

"Опасные" точки сразу видны, это:
1) n=- \frac{2}{7} - знаменатель обращается в 0.
2) n=0 - по обычаю проверяется эта точка.

Эта числовая последовательность может быть сведена ко второму замечательному пределу для нахождения пределов:
lim (1+ \frac{1}{x})^x=e (при x→∞)

Выделяем целую часть в дроби:

\frac{7n+3}{7n+2 } = 1 + \frac{1}{7n+2 }

Используем свойство 2-го замечательного предела, но добавляем степени:

lim (1 + \frac{1}{7n+2 })^{3n-4}

lim (((1 + \frac{1}{7n+2 })^{7n+2})^{ \frac{1}{7n+2}})^{3n-4} = e^{\frac{1}{7n+2} * 3n-4} (при n→∞)

То есть мы степень не меняли: домножили и разделили.

Посчитаем, что получилось:

e^{\frac{1}{7n+2} * 3n-4} = e^{ \frac{3n-4}{7n+2}} = e^{ \frac{n*(3-\frac{4}{n}) }{n*(7+\frac{2}{n})} } = e^{ \frac{3}{7} } (при n→∞)

Итак: 
1) n→+∞ предел равен e^{ \frac{3}{7} }
2) n→-∞  предел равен e^{ \frac{3}{7} }

3) n→0 предел равен:
lim ( \frac{7n+3}{7n+2})^{3n-4} = (\frac{3}{2})^{-4} = (\frac{2}{3})^{4} = \frac{16}{81}

4) n- \frac{2}{7}
По правило Лопиталя имеем: 0 (не расписывал, поскольку это очень много и неважно в данном случае, нас это не интересует).

Мы видим, что при стремлении к бесконечности с разными знаками, мы имеем конечное число. В "опасных" точках, скачков нет.

Используя свойства показательной функции, находим, что график делает скачок в некотором интервале (основание должно быть неотрицательным числом, если же взять число из интервала - \frac{3}{7} \leq x \leq - \frac{2}{7} - мы получаем отрицательное основание).

Можно говорить, что данная числовая последовательность является неограниченной (из-за этого интервала).

Если же этого не учитывать, то данная числовая последовательность является ограниченной (это очень грубо).

Найдите предел числовой последовательности. укажите, является ли заданная числовая последовательност
4,4(95 оценок)
Ответ:
LUCOVERUS
LUCOVERUS
29.12.2020
Достижения египетской науки значительны. Была создана письменность, в математических подсчётах оперировали многозначными цифрами. В свою очередь математические навыки использовались в архитектуре, экономике, астрономии. Достаточно сказать, что египтяне имели один из самых совершенных календарей. Больших успехов достигли египтяне в медицине, чему традиция мумификации тел. Благодаря этому египтяне знали устройство человеческого тела и умели врачевать многие болезни. Значительны были познания египтян в географии. Они собирали сведения о соседних государствах, различных природных объектах, свойствах минералов и растений, имели навыки навигации. Немало знаний было накоплено и по гуманитарным наукам, особенно по истории собственной страны. Сохранились целые научные трактаты.
В Древнем Египте существенную роль играло образование. Школы существовали обычно при храмах, принимались в них только мальчики, примерно с 7 лет. В школах изучали историю, литературу, религию, географию, языки, агрономию, строительное дело, учёт и делопроизводство, астрономию, математику и медицину.

Потребности сельского хозяйства вынудили жрецов научиться вычислять разливы Нила, для чего потребовались знания астрономии. Древние египтяне пришли к необходимости составления календаря. Древнеегипетский календарь, принципы построения которого актуальны и в наши дни, разделял на 3 времени года, которые состояли из 4 месяцев каждое. В месяце было 30 дней, при этом существовало ещё 5 дней вне месяцев. Отметим, что високосные годы египтяне не использовали, поскольку их календарь опережал природный. Также египетские астрономы выделяли на небе созвездия и понимали, что они находятся на небосводе не только ночью, но и днём.
4,6(8 оценок)
Это интересно:
Новые ответы от MOGZ: Математика
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ