ответ:[-1;0]
Пошаговое объяснение:
2·4ˣ + 7·49ˣ ≤ 9·14ˣ
2·4ˣ + 7·49ˣ - 9·14ˣ ≤ 0
Так как 4 = 2² , 49 = 7², а 14 = 2·7 то можно записать
2·2²ˣ + 7·7²ˣ - 9·2ˣ·7ˣ ≤ 0
Разложим на множители левую часть неравенства
2·2²ˣ + 7·7²ˣ - 2·2ˣ·7ˣ - 7·2ˣ·7ˣ ≤ 0
2·2²ˣ - 2·2ˣ·7ˣ + 7·7²ˣ - 7·2ˣ·7ˣ ≤ 0
2·2ˣ(2ˣ - 7ˣ) + 7·7ˣ(7ˣ - 2ˣ) ≤ 0
-2·2ˣ(7ˣ - 2ˣ) + 7·7ˣ(7ˣ - 2ˣ) ≤ 0
(7ˣ - 2ˣ)(7·7ˣ - 2·2ˣ) ≤ 0
(7ˣ - 2ˣ)(7ˣ⁺¹ - 2ˣ⁺¹) ≤ 0
Решим данное неравенство по методу интервалов.
Для этого найдем значения х при которых множители меняют свой знак.
7ˣ - 2ˣ = 0
7ˣ = 2ˣ
х₁ = 0
По аналогии
7ˣ⁺¹ - 2ˣ⁺¹ = 0
х₂ = -1
На числовой прямой отобразим эти точки и получим три интервала (-∞;-1) (-1;0) (0;+∞).
Произвольно выбирая значения в этих интервалах найдем их знаки.
Например в интервале (0;+∞) выбираем х =2, тогда (7ˣ - 2ˣ)(7ˣ⁺¹ - 2ˣ⁺¹) = (7² - 2²)(7¹ - 2ˣ¹) > 0. Аналогично находим знаки в других интервалах
+ 0 - 0 +
!!
-1 0
На числовой прямой видно, что левая часть неравенства меньше или равна нулю на отрезке [-1;0]
Следовательно неравенство истинно при всех значениях
х ∈[-1;0]
а)87346791 б)5432234155
Число делится на 5, если его последняя цифра - ноль или 5
а)1=0+1 остаток 1 б) 5 без остатка
Число делится на 8, если три его последние цифры - нули или образуют число, которое делится на 8
а)791=784+7 остаток 7 б)155=152+3 остаток 3
Число делится на 9, если его сумма цифр делится на 9
а)8+7+3+4+6+7+9+1=45:9=5 без остатка б)5+4+3+2+2+3+4+1+5+5=34=27+7 остаток 7
Число делится на 10, если его последняя цифра - ноль
а)1=0+1 остаток 1 б)5=0+5 остаток 5
Число делится на 25, если две его последние цифры - нули или образуют число, которое делится на 25.
а)91=75+16 остаток 16 б)55=50+5 остаток 5