М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
ishnlv
ishnlv
18.02.2022 21:45 •  Математика

Даны точки:

B(40;−47) ,

K(−47;40) ,

M(40;45) ,

L(−47;−10) .

Определи, которая из данных точек находится в II квадранте координатной плоскости

👇
Ответ:
Yita
Yita
18.02.2022

М(40;45), правельный

4,7(10 оценок)
Ответ:

но и в этом году в деревне проживало около двух тысяч человек в трудо

4,5(39 оценок)
Открыть все ответы
Ответ:
Svetik200611
Svetik200611
18.02.2022

1,2

Пошаговое объяснение:

1. По свойству биссектрисы (биссектриса делит противоположную сторону треугольника на части, пропорциональные прилегающим сторонам) найдём AC через BC

Отсюда следует, что AC= 2BC

2. По свойству высоты (длина высоты, проведенной из вершины прямого угла, равна отношению произведения длин катетов и гипотенузы: h = \frac{{ab}}{c} )

CH =

3. BC найдем по теореме Пифагора. У нас получится BC^2, но его не нужно под квадратный корень. Просто это значение вставляем в предыдущее.

2*1,8/3 = 1,2

4,6(72 оценок)
Ответ:
костелои
костелои
18.02.2022

Тео́рия вероя́тностей — раздел математики, изучающий случайные события, случайные величины, их свойства и операции над ними

Пошаговое объяснение:

Возникновение теории вероятностей как науки относят к средним векам и первым попыткам математического анализа азартных игр (орлянка, кости, рулетка). Первоначально её основные понятия не имели строго математического вида, к ним можно было относиться как к некоторым эмпирическим фактам, как к свойствам реальных событий, и они формулировались в наглядных представлениях. Самые ранние работы учёных в области теории вероятностей относятся к XVII веку. Исследуя прогнозирование выигрыша в азартных играх, Джероламо Кардано, Блез Паскаль и Пьер Ферма открыли первые вероятностные закономерности, возникающие при бросании костей[1]. Под влиянием поднятых и рассматриваемых ими вопросов решением тех же задач занимался и Христиан Гюйгенс. При этом с перепиской Паскаля и Ферма он знаком не был, поэтому методику решения изобрёл самостоятельно. Его работа, в которой вводятся основные понятия теории вероятностей (понятие вероятности как величины шанса; математическое ожидание для дискретных случаев, в виде цены шанса), а также используются теоремы сложения и умножения вероятностей (не сформулированные явно), вышла в печатном виде на двадцать лет раньше (1657 год) издания писем Паскаля и Ферма (1679 год)[2].Важный вклад в теорию вероятностей внёс Якоб Бернулли: он дал доказательство закона больших чисел в простейшем случае независимых испытаний.

В XVIII веке важное значение для развития теории вероятностей имели работы Томаса Байеса, сформулировавшего и доказавшего Теорему Байеса.

В первой половине XIX века теория вероятностей начинает применяться к анализу ошибок наблюдений; Лаплас и Пуассон доказали первые предельные теоремы. Карл Гаусс детально исследовал нормальное распределение случайной величины (см. график выше), также называемое «распределением Гаусса».

Во второй половине XIX века значительный вклад внёс ряд европейских и русских учёных: П. Л. Чебышёв, А. А. Марков и А. М. Ляпунов. В это время были доказаны закон больших чисел, центральная предельная теорема, а также разработана теория цепей Маркова.

Современный вид теория вероятностей получила благодаря аксиоматизации, предложенной Андреем Николаевичем Колмогоровым. В результате теория вероятностей приобрела строгий математический вид и окончательно стала восприниматься как один из разделов математики.

4,4(67 оценок)
Это интересно:
Новые ответы от MOGZ: Математика
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ