3 км/ч
Пошаговое объяснение:
Будем решать задачу с уравнения.
Во всех задачах (почти во всех) за неизвестное х принимаем то, что необходимо найти по условию.
Итак: пусть скорость течения реки х км\ч, тогда
лодка плыла по течению быстрее, чем если бы течения совсем не было. Течение " " лодке плыть, т.е. скорость течения прибавлялась к скорости лодки, значит,чтобы вычислить скорость лодки нужно от 19 км/ч отнять скорость течения х км/ч:
скорость лодки (19-х) км\ч.
А когда лодка плыла против течения, то течение тормозило лодку, уменьшала скорость лодки. Т.е. чтобы узнать скорость лодки в этом случае необходимо к 13 км/ч прибавить скорость течения:
скорость лодки (13+х) км/ч.
У нас есть два выражения для скорости лодки, эти выражения равны, мы так и запишем:
19-х=13+х;
2х=19-13;
2х=6;
х=6/2=3 (км/ч)
y=x²-3x.
Это парабола, ветви которой вверх. Найдём точки пересечения с осями координат:
(0;0) и (3;0)
Вершина параболы:
(1.5;-2.25)
y=-x²-7x
Это парабола, ветви которой вниз. Найдём точки пересечения с осями координат:
(-7;0) и (0;0)
Вершина параболы:
(-3.5;12.25)
Сначала построим графики отдельно, отметим ограничение и построим в общей системе координат.
Прямая y=m, это прямая, которая параллельна оси Ох, по графику функции видно, что сначала 1 пересечение, потом 2, затем 3, опять 2 и снова 1 пересечение. Две общие точки, когда два пересечения, а именно в вершинах, парабол, которые мы строили до этого, нам нужно значение по ординате, поэтому берём -2.25 и 12.25.
ответ: m={-2.25;12.25}