как я понимаю задание, необходимо сначала найти образ прямой р при центральной симметрии относительно т.М, а затем осуществить параллельный перенос на вектор MN.
Возьмем две характерные точки прямой р:
А(0; -3) и В(1; -1). Найдем их образы при центральной симметрии отн.
т. М(-3; 5):
A': К вектору АМ (-3; 8) прибавляем такой же, получим вектор AA' (-6;16)
с координатами конца:
х - 0 = -6 х = -6.
у -(-3) = 16 у = 13
Итак A' (-6; 13).
B': К вектору ВМ (-4; 6) прибавляем такой же и получим вектор BB' (-8; 12) с координатами конца:
х - 1 = -8 х = -7
у -(-1) = 12 у = 11.
Итак B': (-7; 11).
Теперь совершим перемещение точек A', B' на вектор MN (4; -4):
Точка A' (-6; 13) перейдет в точку A" (-2; 9).
Точка B' (-7; 11) перейдет в точку B" (-3; 7)
Указанные точки принадлежат искомому образу p" данной прямой р. Найдем уравнение этого образа:
1)Классическое определение вероятности. Классическое определение вероятности применимо только для очень узкого класса задач, где все возможные исходы опыта можно свести к схеме случаев. В большинстве реальных задач эта схема неприменима.
Статистическое определение вероятности Рассмотрим эксперимент, заключающийся в том, что подбрасывается игральная кость, сделанная из неоднородного материала. Ее центр тяжести не находится в геометрическом центре. В этом случае мы не можем считать исходы (выпадение единицы, двойки и т. д. ) равновероятными. Из физики известно, что кость более часто будет падать на ту грань, которая ближе к центру тяжести. Как определить вероятность выпадения, например, трех очков? Единственное, что можно сделать, это подбросить эту кость n раз (где n-достаточно большое число, скажем n=1000 или n=5000), подсчитать число выпадений трех очков n3 и считать вероятность исхода, заключающегося в выпадении трех очков, равной n3/n – относительной частоте выпадения трех очков. Аналогичным образом можно определить вероятности остальных элементарных исходов – единицы, двойки, четверки и т. д. Теоретически такой образ действий можно оправдать, если ввести статистическое определение вероятности.
2) Независимость (тоесть теория вероятности) где есть два события Пример: Пусть брошены три уравновешенные монеты. Определим события следующим образом: монеты 1 и 2 упали одной и той же стороной; монеты 2 и 3 упали одной и той же стороной; монеты 1 и 3 упали одной и той же стороной; Легко проверить, что любые два события из этого набора независимы. Все же три в совокупности зависимы, ибо зная, например, что события1 и 2 произошли, мы знаем точно, что 3 также произошло
Төрт түлік мал – халқымыз байлығы халқымыздың тарихы осы төрт түлік малмен тікелей байланысты. «ат-ердің қанаты» деп айтатын дана халқымыз жылқы өте қастерлеген. жылқы-мінсең көлік, жесең ет. қазы-қарта, жал-жаясыз бірде-бір қазақ жанұясын біз көре алмаймыз. сиыр - жесең ет, кисең киім, айран, сүті, қаймағынсыз қазақ өспейді. түйе малы –нағыз көлік, қымыран мен шұбаты дертке дауа. қой шаруашылығы- қазақстанның мал шаруашылығының басты саласы. халқымыздың маманданған дәстүрлі ата кәсібі. осы төрт түлік халқымыздың ең басты байлықтарының бірі екенін білгеніміз жөн.
как я понимаю задание, необходимо сначала найти образ прямой р при центральной симметрии относительно т.М, а затем осуществить параллельный перенос на вектор MN.
Возьмем две характерные точки прямой р:
А(0; -3) и В(1; -1). Найдем их образы при центральной симметрии отн.
т. М(-3; 5):
A': К вектору АМ (-3; 8) прибавляем такой же, получим вектор AA' (-6;16)
с координатами конца:
х - 0 = -6 х = -6.
у -(-3) = 16 у = 13
Итак A' (-6; 13).
B': К вектору ВМ (-4; 6) прибавляем такой же и получим вектор BB' (-8; 12) с координатами конца:
х - 1 = -8 х = -7
у -(-1) = 12 у = 11.
Итак B': (-7; 11).
Теперь совершим перемещение точек A', B' на вектор MN (4; -4):
Точка A' (-6; 13) перейдет в точку A" (-2; 9).
Точка B' (-7; 11) перейдет в точку B" (-3; 7)
Указанные точки принадлежат искомому образу p" данной прямой р. Найдем уравнение этого образа:
у = кх +b
-2k + b = 9, b = 13,
-3k + b = 7, k = 2.
ответ: у = 2х + 13
Пошаговое объяснение: