ну, в первой загадке вы опечатались в условии, похоже:
должно быть так: "через точку а к окружности w (0,r)проведены". а то выходит, что а принадлежит окружности, при этом через нее аж две касательные
ну а доказывать, полагаю, надо через равенство треугольников, образующихся при соединении этой точки а с центром окружности и радиусов, проведенных к точкам касания в и с.
треугольники аво и асо:
во-первых, прямоугольные. (углы в и с прямые, ибо радиус к точке касания перперндикулярен касательной);
во-вторых, имеют равные катеты ов и ос (длина их - радиус окружности);
в-третьих - у них равные гипотенузы (она у них общая, это отрезок ао);
значит они равны (по углу и двум сторонам)
следовательно ав=ас.
согласны?
а вот что думаю про вторую :
раз угол прямой, то, соединив отрезками точки касания с центром окружности, получим симпатичный квадрат, диагональ которого - та самая хорда.
ну, а у квадрата диагонали равны и перпендикулярны друг другую.
значит проводим вторую диагональ (она как раз из центра к хорде под прямым углом пойдет) и сразу становится видно, что расстояние от хорды то центра окружности окружности - ровно половина диагонали, т.е.
Эзоп был сочинителем басен. Считалось, что все басенные рассказы, которые потом на разный лад пересказывались в течение многих веков, впервые были придуманы Эзопом: и про волка и ягненка, и про лису и виноград, и про лягушек, просящих царя. Его имя так срослось со словом «басня», что, когда какой-нибудь писатель брался за сочинение басен, он писал на своей книге: «Эзоповы басни такого-то писателя». Эзоп сочинял басни потому, что он был раб и говорить прямо то, что он думал, было для него опасно. Это был его иносказательный, «эзоповский язык». А о том, как он был рабом, и у кого, и что из этого получалось, в народе рассказывали множество веселых историй.
ну, в первой загадке вы опечатались в условии, похоже:
должно быть так: "через точку а к окружности w (0,r)проведены". а то выходит, что а принадлежит окружности, при этом через нее аж две касательные
ну а доказывать, полагаю, надо через равенство треугольников, образующихся при соединении этой точки а с центром окружности и радиусов, проведенных к точкам касания в и с.
треугольники аво и асо:
во-первых, прямоугольные. (углы в и с прямые, ибо радиус к точке касания перперндикулярен касательной);
во-вторых, имеют равные катеты ов и ос (длина их - радиус окружности);
в-третьих - у них равные гипотенузы (она у них общая, это отрезок ао);
значит они равны (по углу и двум сторонам)
следовательно ав=ас.
согласны?
а вот что думаю про вторую :
раз угол прямой, то, соединив отрезками точки касания с центром окружности, получим симпатичный квадрат, диагональ которого - та самая хорда.
ну, а у квадрата диагонали равны и перпендикулярны друг другую.
значит проводим вторую диагональ (она как раз из центра к хорде под прямым углом пойдет) и сразу становится видно, что расстояние от хорды то центра окружности окружности - ровно половина диагонали, т.е.
40/2 = 20см
ура?
))