К дробям применимы самые разные арифметические операции.
Приведение дроби к общему знаменателюНапример, необходимо сравнить дроби 3/4 и 4/5.
Чтобы решить задачу, сначала найдем наименьший общий знаменатель, т.е. наименьшее число, которое делится без остатка на каждый из знаменателей дробей
Наименьший общий знаменатель(4,5) = 20
Затем знаменатель обоих дробей приводится к наименьшему общему знаменателю
ответ: 15/20 < 16/20
Сложение и вычитание дробейЕсли необходимо посчитать сумму двух дробей, их сначала приводят к общему знаменателю, затем складывают числители, при этом знаменатель останется без изменений. Разность дробей считается аналогичным образом, различие лишь в том, что числители вычитаются.
Например, необходимо найти сумму дробей 1/2 и 1/3
ответ: 5/6
Теперь найдем разность дробей 1/2 и 1/4
ответ: 1/4
Умножение и деление дробейТут решение дробей несложное, здесь все достаточно просто:
Умножение - числители и знаменатели дробей перемножаются между собой;Деление - сперва получаем дробь, обратную второй дроби, т.е. меняем местами ее числитель и знаменатель, после чего полученные дроби перемножаем.Например:
На этом о том, как решать дроби, всё. Если у вас остались какие то вопросы по решению дробей, что то непонятно, то пишите в комментарии и мы обязательно вам ответим.
Для закрепления материала рекомендуем также посмотреть наше видео:
Пошаговое объяснение:
х км/ч - скорость автомашины
у км/ч - скорость поезда
3х + 5у = 600 (км) - первое уравнение
6х - 5у = 120 (км) - второе уравнение
Сложим эти уравнения и получим:
3х+5у+6х-5у = 600+120
9х = 720
х = 720:9
х = 80 (км/ч) - скорость автомашины
Подставим значение Х в любое уравнение и найдем У:
3*80 + 5у = 600
5у = 600 - 240
у = 360:5
у = 72 (км/ч) - скорость поезда
скорость автомашины = 80 км/ч
скорость поезда = 72 км/ч