М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
Пени67
Пени67
11.09.2021 08:25 •  Математика

Кравець придбав 2 рулони шовкової тканиниоднакової якості, один - довжиною 18,5 м, а другии а другий — на 11 мбільший.скільки сорочок він пошив із цієї тканини, якщо на одну сорочку йде 2, 75 м? 2) за якою ціною кравець купував шовк, якщо відомо, щокожна сорочка була продана за ціною 220 грн за штуку, а вартість шиття і торгова націнка склали 68% ціни? ​

👇
Открыть все ответы
Ответ:
ellaandharley30
ellaandharley30
11.09.2021

1. В 1 очередь надо найти область определения

Для левой части это будет x ≠ 2, ее же в этом случае приведем к виду

log√3\frac{x-2}{2x-4}=log√3\frac{1}{2}

В правой части область определения x ≠ 2 и (x+1)/(x+2)>0, если x+1 >0 то и подавно x+2>0, если х+1 < 0 и x+2 <0, то x< -2, тогда x∈(-∞,-2)∪(-1,+∞), но с учетом x ≠2 имеем область определения x∈(-∞,-2)∪(-1,2)∪(2,+∞)

Теперь, избавляясь от логоарифмов

1/2= (x+1)/(x+2), x+2=2x+2

x =0

2. Тоже сначала ищем область определения

x²-9 ≥0, x ∈(-∞,-3]∪[3,+∞)

x+3 ≥ 0, x ∈ [-3,+∞)

x²+6x+9=(x+3)²≥0 ∀ x

Область определения в этом случае имеет вид x ∈ [3,+∞)

тогда имеем уравнение

\sqrt{x-3} \sqrt{x+3}  + \sqrt{x+3} ≥x+3

\sqrt{x-3} +1 ≥ \sqrt{x+3}

x-3+2\sqrt{x-3}+1≥x+3

2\sqrt{x-3}≥5

x-3 ≥ 6,25

x ≥ 9,25

3. x=2y

x-y=y, x-y+1=y+1

log_{1/3} 4y +

log_{1/3} 4y=0

4y=1,

y=0,25, x=0,5

Пошаговое объяснение:

4,6(76 оценок)
Ответ:
1sherlock2
1sherlock2
11.09.2021

1. В 1 очередь надо найти область определения

Для левой части это будет x ≠ 2, ее же в этом случае приведем к виду

log√3\frac{x-2}{2x-4}=log√3\frac{1}{2}

В правой части область определения x ≠ 2 и (x+1)/(x+2)>0, если x+1 >0 то и подавно x+2>0, если х+1 < 0 и x+2 <0, то x< -2, тогда x∈(-∞,-2)∪(-1,+∞), но с учетом x ≠2 имеем область определения x∈(-∞,-2)∪(-1,2)∪(2,+∞)

Теперь, избавляясь от логоарифмов

1/2= (x+1)/(x+2), x+2=2x+2

x =0

2. Тоже сначала ищем область определения

x²-9 ≥0, x ∈(-∞,-3]∪[3,+∞)

x+3 ≥ 0, x ∈ [-3,+∞)

x²+6x+9=(x+3)²≥0 ∀ x

Область определения в этом случае имеет вид x ∈ [3,+∞)

тогда имеем уравнение

\sqrt{x-3} \sqrt{x+3}  + \sqrt{x+3} ≥x+3

\sqrt{x-3} +1 ≥ \sqrt{x+3}

x-3+2\sqrt{x-3}+1≥x+3

2\sqrt{x-3}≥5

x-3 ≥ 6,25

x ≥ 9,25

3. x=2y

x-y=y, x-y+1=y+1

log_{1/3} 4y +

log_{1/3} 4y=0

4y=1,

y=0,25, x=0,5

Пошаговое объяснение:

4,6(75 оценок)
Это интересно:
Новые ответы от MOGZ: Математика
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ