Дано :
Четырёхугольник ABCD - равнобедренная трапеция (AB║DC, AD = BC).
Окружность с центром О - вписанная в равнобедренную трапецию окружность.
ОМ - радиус окружности = 5 см.
AD = BC = 16 см.
Найти :
S(ABCD) = ?
Если в четырёхугольник можно вписать окружность, то суммы противоположных сторон равны.
Следовательно -
AD + BC = AB + DC.
Но так как -
AD = BC = 16 см.
Поэтому -
AD + BC = 16 см + 16 см = 32 см
AB + DC = 32 см.
Радиус вписанной в трапецию окружности равен половине высоты.
На чертёже НМ - высота ABCD, следовательно -
НМ = 2*ОМ
НМ = 2*5 см
НМ = 10 см.
Площадь трапеции равна произведению полусуммы оснований и высоты.
То есть -

Теперь в формулу подставляем известные нам численные значения и считаем -

ответ : 160 (ед²).

1. На першій стоянці спочатку було 12 машин.
2. На другій стоянці спочатку було 36 машин.
Пошаговое объяснение:
Перша автостоянка х машин.
Друга автостоянка (х * 3) машин.
Нехай на першій автостоянці було х машин, тоді на другій автостоянці (х * 3) машин.
Коли з другої автостоянці перевели 12 автомобіля, (х * 3) – 12, на першу (х +12), то машин на стоянках стало порівну. Складемо рівняння.
(х * 3) – 12 = х +12
3х – 12 = х + 12
3х – х = 12 + 12
2х = 24
х1 = 24 : 2
х2 = 12
На першій стоянці спочатку було 12 машин.
На другій стоянці спочатку було 12 * 3 = 36 машин.
-2х+у-7=0
-2х=7-у
х=1/2у-7/2