М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
020807
020807
07.10.2022 06:40 •  Математика

У двух подруг было в сумме 800 руб., 3/4​ этой суммы истратили. Через некоторое время результат увеличился в 2 3/5 раза, и они снова потратили 7/10 от новой суммы. Сколько денег всего потратили подруги? Сколько денег у них осталось?

👇
Ответ:
максим13011
максим13011
07.10.2022

ответ:1)800*3:4=600 - потратили 1 раз

2)800-600=200 - осталось после 1 траты

3)200*2,3/5=520- стало после увеличения

4)520*7:10=364-потратили 2 раз

5)600+364 =964- потратили всего

6)520-364= 156 - осталось

Пошаговое объяснение:

4,8(38 оценок)
Открыть все ответы
Ответ:
BlaBla1aquamarine
BlaBla1aquamarine
07.10.2022

Зимние Олимпийские игры 2014 (англ. 2014 Winter Olympics, фр. Jeux Olympiques d'hiver de 2014, официальное название XXII Олимпийские зимние игры) — международное спортивное мероприятие, проходившее в российском городе Сочи с 7 по 23 февраля 2014 года. Столица Олимпийских игр — 2014 была выбрана во время 119-й сессии МОК в Гватемале 4 июля 2007 года[⇨]. На территории России Олимпийские игры во второй раз (до этого в Москве в 1980 году летние Олимпийские игры), и впервые — зимние Игры. По окончании Олимпийских игр на тех же объектах были проведены зимние Паралимпийские игры.

Игры в Сочи являются двадцать вторыми (XXII) зимними по счёту (символично, что двадцать вторыми летними были и Игры 1980 года в Москве). По сравнению с Играми 2010 года в Ванкувере количество соревнований в различных дисциплинах увеличено на 12, в общей сложности было разыграно 98 комплектов медалей

Пошаговое объяснение:

4,7(89 оценок)
Ответ:
vbv551
vbv551
07.10.2022

Сколькими можно представить 1000000 в виде произведения трёх множителей, если произведения, отличающиеся порядком множителей,

 а) считаются различными?

 б) считаются тождественными?

Решение

 а)  106 = 26·56.  Каждый множитель однозначно определяется количеством двоек и пятёрок, входящих в его разложение. Поэтому задача сводится к разложению шести белых и шести чёрных шаров по трём различным ящикам. Аналогично задаче 30729 получаем б) Есть ровно одно разложение, не зависящее от порядка сомножителей, – в нём все множители равны 100. Те разложения, в которых есть ровно два равных множителя, мы в п. а) сосчитали трижды. В каждый из равных множителей 2 может входить в степени 0, 1, 2 или 3, то есть четырьмя различными столькими же может входить 5. Всего получаем 16 разложений такого вида, но одно из них – рассмотренное выше разложение 100·100·100. Количество разложений с тремя различными множителями равно  784 – 1 – 3·15 = 738.  Каждое из них мы сосчитали 6 раз. Всего получаем

1 + 15 + 738 : 6 = 139  разложений.

Пошаговое объяснение:

4,8(38 оценок)
Это интересно:
Новые ответы от MOGZ: Математика
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ