ответ: 15
Пошаговое объяснение: чтобы найти НОД (наибольший общий делитель) двух любых чисел, нужно:
1) Разложить числа на простые множители
2) Определить степени, основания которых являются общими простыми делителями данных чисел
3) Перемножить выбранные степени. Полученное произведение является искомым НОД.
Разложим числа 75 и 90 на простые множители, получим:
75=3×5×5
90=2×3×3×5=2×3²×5
Находим общие простые делители данных чисел, которыми являются:
3, 5
Теперь мы можем начать искать НОД:
НОД (75;90)=3×5=15
Проверка:
75:15=5
90:15=6
У чисел 5 и 6 уже нет общих делителей, кроме 1 (взаимно простые числа), а значит, что решение верное.
ответ: 20
Определение: Диагональ – это отрезок, соединяющий любые две несмежные вершины многоугольника
Объяснение:
Рассмотрим рисунок выпуклого восьмиугольника, данный в приложении. Каждая вершина соединяется отрезками с 7 другими. Но два из этих отрезков не являются диагоналями. Получается, что из каждой вершины выходит диагоналей на 3 меньше, чем количество всех вершин. Для пятиугольника - из каждой вершины выходят 5-3 =2 диагонали. для квадрата из каждой вершины 4-3=1 диагональ. У треугольника диагоналей вовсе нет. Но! Каждая диагональ посчитана дважды ( отмечено на красных диагоналях рисунка). Следовательно, это количество нужно разделить на 2.
Таким образом: формула лля нахождения числа диагоналей многоугольника d =n(n-3)/2, где d – число диагоналей, n – число сторон (вершин) многоугольника.
Число диагоналей восьмиугольника d=8•(8-3)/2=20 ( диагоналей(