ВАРИАНТ 3 координатный рисунок (- 4; 44; (- 3; 3); (- 2; 0); (- 2; - 1); (- 3; - 2); (0; 0); (1; - 1); (0; - 1); (- 1; - 2); (4; - 2); (5; 0); (4; - 1); (4; 0); (3; 2); (1; 3); (- 1; 3); (- 2; 4); (1; 5); (- 1; 5); (1; 6); (0; 6); (- 2; 5); (- 3; 5); (- 4; 4). 4).Нужно из этих координат создать рисунок на координатной плоскости
ответ:12
Пошаговое объяснение:
Найдите (в см2) площадь S закрашенной фигуры, изображенной на клетчатой бумаге с размером клетки 1 см \times 1 см (см. рис.). В ответе запишите S/{pi}.
Сначала найдем радиус круга. Считаем клеточки, и получаем, что радиус равен 4.
Тогда площадь круга равна {pi}r^2=4^2{pi}=16{pi}
Заштрихованная фигура - это половина круга, и ее площадь равна S/2=8{pi}
В ответе записываем S/{pi}.
ответ: 8
2. Найдите (в см2) площадь S закрашенной фигуры, изображенной на клетчатой бумаге с размером клетки 1 см \times 1 см (см. рис.). В ответе запишите S/{pi}.
Сначала найдем радиус круга. Считаем клеточки, и получаем, что радиус равен 3.
Тогда площадь круга равна {pi}r^2=3^2{pi}=9{pi}
Найдем, какую часть заштрихованная фигура составляет от круга.
Мы видим, что заштрихованная фигура - это половина круга и еще одна четверть от половины, то есть одна восьмая.
1/2+1/8=5/8
Таким образом, площадь заштрихованной фигуры составляет 5/8 от площади круга.
S={5/8}*9{pi}=5,625{pi}
В ответе записываем S/{pi}.
ответ: 5,625
3. Найдите (в см2) площадь S закрашенной фигуры, изображенной на клетчатой бумаге с размером клетки 1 см \times 1 см (см. рис.). В ответе запишите S/{pi}.
Сначала найдем радиус круга. Считаем клеточки, и получаем, что радиус равен 4.
Тогда площадь круга равна {pi}r^2=4^2{pi}=16{pi}
Найдем, какую часть круга составляет незакрашенный сектор. Если мы незакрашенный центральный угол повернем на угол alpha, то увидим, что его величина равна 90^{circ}:
Сектор 90^{circ} - это 1/4 часть круга. Следовательно, закрашенный сектор - это 3/4 круга. И его площадь равна S={3/4}*16{pi}=12{pi}
В ответе записываем S/{pi}.
ответ: 12