Очевидно, К=2 нам не подходит, т.к. такая прямая (F(x) = kx - линейная функция, график прямая) будет совпадать с 2х.
Рассмотрим график; чтобы было три пересечения, прямая должна пересекать все три "куска" графика.
Первую часть, у=2х, пересекает при К!=2.Вторую часть, у=2, пересекает при всех К принадлежащих интервалу (2;0.5) - 0.5 получаем из уравнения 2=4К (берем "граничное" положение (при котором УЖЕ нельзя найти три пересечения) F(x)=kx и подставляем.Третью часть пересекает при соблюдении первого условия, т.к. если прямая пересекает одну из двух параллельных прямых, то она пересекает и вторую.
Допустим, что в первом взвешивании на чашки весов положили по 4 монеты и наблюдается равновесие. Тогда фальшивая монета находится среди остальных 5 монет, причем может быть как легче, так и тяжелее настоящей монеты. Всего, таким образом, имеется 2*5= 10 вариантов. Но оставиеся 2 взвешивания могут иметь лишь 3(в квадрате) = 9 различных исходов. Если же в первом взвешивании на чашки весов положили по 5 монет, то в случае неравновесия ( Л не равно П) снова остается 10 вариантов. Действительно, если фальшивая монета легче, то она находится среди 5 монет на левой чаше, если тяжелее - то среди 5 монет на правой чаше.
(2; 0,5)
Пошаговое объяснение:
Очевидно, К=2 нам не подходит, т.к. такая прямая (F(x) = kx - линейная функция, график прямая) будет совпадать с 2х.
Рассмотрим график; чтобы было три пересечения, прямая должна пересекать все три "куска" графика.
Первую часть, у=2х, пересекает при К!=2.Вторую часть, у=2, пересекает при всех К принадлежащих интервалу (2;0.5) - 0.5 получаем из уравнения 2=4К (берем "граничное" положение (при котором УЖЕ нельзя найти три пересечения) F(x)=kx и подставляем.Третью часть пересекает при соблюдении первого условия, т.к. если прямая пересекает одну из двух параллельных прямых, то она пересекает и вторую.Имеем К!=2 и 2<K<0,5 => К принадлежит (2; 0,5).