ответ:В математике последовательность обозначают маленькой латинской буквой, а каждый отдельный ее элемент – той же буквой с числовым индексом равным порядковому номеру этого элемента.
То есть, если последовательность
3
;
6
;
12
;
24
;
48
…
обозначить как
a
n
, то можно записать, что
a
1
=
3
,
a
2
=
6
,
a
3
=
12
,
a
4
=
24
и так далее.
Пошаговое объяснение:Иными словами, для последовательности
a
n
=
{
3
;
6
;
12
;
24
;
48
;
96
;
192
;
384
…
}
.
порядковый номер элемента
1
2
3
4
5
6
7
8
…
обозначение элемента
a
1
a
2
a
3
a
4
a
5
a
6
a
7
a
8
…
значение элемента
3
6
12
24
48
96
192
384
…
a) \frac{3}{2 \sqrt{7} } = \frac{3 \times \sqrt{7} }{2 \times \sqrt{7 \times }\sqrt{7} } = \frac{3}{2 \times 7} = \frac{3}{14}a)
2
7
3
=
2×
7×
7
3×
7
=
2×7
3
=
14
3
\begin{gathered}b) \frac{9}{7 + 4 \sqrt{3} } = \frac{9 \times (7 - 4 \sqrt{3} )}{(7 + 4 \sqrt{3} ) \times (7 - 4 \sqrt{3} )} = \frac{63 - 36 \sqrt{3} }{ {7}^{2} -{ (4 \sqrt{3}) }^{2} } = \\ = \frac{63 - 36 \sqrt{3} }{49 - 16 \times 3} = \frac{63 - 36 \sqrt{3} }{49 - 48} = \frac{63 - 36 \sqrt{3} }{1} = 63 - 36 \sqrt{3}\end{gathered}
b)
7+4
3
9
=
(7+4
3
)×(7−4
3
)
9×(7−4
3
)
=
7
2
−(4
3
)
2
63−36
3
=
=
49−16×3
63−36
3
=
49−48
63−36
3
=
1
63−36
3
=63−36
3
4)
8
х
6.
Пошаговое объяснение:
вот это пропорция