368
Пошаговое объяснение:
Пусть х л бензина было в первой бочке, тогда (1104 - х) л - во второй. Уравнение:
х - (1/5)х = (1104 - х) - 3/7 · (1104 - х)
(4/5)х = 1104 - х - 3312/7 + (3/7)х
(4/5)х + х - (3/7)х = 1104 - 473 целых 1/7
(9/5)х - (3/7)х = 630 целых 6/7
(63/35)х - (15/35)х = 4416/7
(48/35)х = 4416/7
х = 4416/7 : 48/35
х = 4416/7 · 35/48
х = (92·5)/(1·1)
х = 460 (л) - было в первой бочке первоначально
1104 - 460 = 644 (л) - было во второй бочке первоначально
ответ: 460 л и 644 л.
Проверка:
1) 460 - 1/5 · 460 = 460 - 92 = 368 (л) - осталось в первой бочке;
2) 644 - 3/7 · 644 = 644 - 276 = 368 (л) - осталось во второй бочке;
3) 368 = 368 - стало поровну в каждой бочке.
Если рядом сидят два алхимика, то правый соврет: НЕТ.
Таким, образом, ответ НЕТ возникает в том случае, если рядом сидят два одинаковых человека: два химика или два алхимика.
Допустим, у нас n химиков.
Тогда ряд из (n+1) рядом сидящих алхимиков дает n ответов НЕТ.
Ряд надо составлять из алхимиков, чтобы химиков получилось минимальное, а не максимальное количество.
Пусть все химики сидят через одного с алхимиками.
ХАА...АХАХА...ХА
Разобьем их на пары
(ХА)А...А(ХА)(ХА)...(ХА)
Здесь n А подряд и n пар ХА. Всего n + n А и n Х.
n + n + n = 160
3n = 160
Но 160 не делится на 3, поэтому такого не может быть.
Значит, есть хотя бы одна пара Х подряд.
(ХА)(ХХ)А...А(ХА)(ХА)...(ХА)
Здесь 2 химика, еще (n-2) пары ХА и ряд из n А.
Химиков по-прежнему n, а алхимиков n + (n-2)
n + n - 2 + n = 160
3n - 2 = 160.
3n = 162
n = 54