1. Чтобы число делилось на 3, в сумме его цифры должны быть равны числу, которое делится на 3. 7+6+3=16, 7+6+3+2=18 делится на 3. Следовательно, добавляем 2, получается 7632. 2. Чтобы число делилось на 6, в сумме его цифры должны быть равны числу, которое делится и на 2, и на 3. 7+6+3=16, 7+6+3+2=18 делится и на 2, и на 3. Следовательно, добавляем 2, получается 7632. 3. Чтобы число делилось на 19, его десятки, сложенные с удвоенным числом единиц, делится на 19. 763*, сумма десятков=763, а теперь надо вместо * взять число и умножить его на 2, чтобы в сумме они делились на 19. Например, возьмем число 8, 2*8=16. Тогда, 763+16=779, делится на 19. Следовательно, 7638.
1) x(4-x)(x-2) <= 0 Особые точки: 0; 2; 4. Берём любое число, например, 1. 1(4-1)(1-2) = 1*3(-1)<0 Мы даже не вычисляем, важен только знак. Число нам подходит, значит, отрезок [0; 2], в который входит 1, является решением. А ещё решением являются промежутки через один от него. x € [0; 2] U [4; +oo) Остальные делаются точно также. 2) (x+3)(x+1)^2*(x-2) <= 0 Здесь есть квадрат, который =0 в точке x=-1 и >0 во всех остальных точках. Поэтому мы отмечаем x=-1 как решение и убираем эту скобку. (x+3)(x-2) <= 0 x € [-3; 2] Точка x=-1 входит в этот отрезок. x € [-3; 2]
3) Здесь сначала надо сделать справа 0, а потом уже применять метод интервалов. (x+1)/(x+2) - 3 >= 0 (x+1-3x-6)/(x+2) >= 0 (-2x-5)/(x+2) >= 0 Поменяем знак числителя, при этом поменяется знак неравенства. (2x+5)/(x+2) <= 0 x € [-5/2; -2)
Пошаговое объяснение:
Вот есле го сердечко и 5 звезд