Если составляющая приложенной к телу силы, лежащая в плоскости соприкосновения двух тел, недостаточна для того, чтобы вызвать скольжение данного тела относительно другого, то возникающая сила трения называется неполной силой трения (участок OA на рис.); она вызвана малыми (~ 1 мкм) частично обратимыми перемещениями в зоне контакта, величина которых пропорциональна приложенной силе и изменяется с увеличением последней от 0 до некоторого максимального значения (точка А на рис.), называемого силой трения покоя; эти перемещения называются предварительными смещениями. После того как приложенная сила превысит критическое значение, предварительное смещение переходит в скольжение, причём сила Т. в. несколько уменьшается (точка A1) и перестаёт зависеть от перемещения (сила трения движения). Вследствие волнистости и шероховатости каждой из поверхностей, касание двух твёрдых тел происходит лишь в отдельных «пятнах», сосредоточенных на гребнях выступов. Размеры пятен зависят от природы тел и условий Т. в. Более жёсткие выступы внедряются в деформируемое контртело, образуя единичные пятна реального контакта, на которых возникают силы прилипания (адгезня, химические связи, взаимная диффузия и др.). В результате приработки пятна касания бывают «вытянуты» в направлении движения. Диаметр эквивалентного по площади пятна касания составляет от 1 до 50 мкм в зависимости от природы поверхности, вида обработки и режима Т. в. При скольжении эти пятна наклоняются под некоторым углом к направлению движения, материал раздвигается в стороны и подминается скользящей неровностью, а пятна прилипания, образующиеся из поверхностных плёнок, покрывающих твёрдое тело, называются мостиками, непрерывно разрушаются (срезаются) и формируются вновь. В этих пятнах реализуются напряжения лишь в несколько раз меньшие теоретической прочности материала. Сопротивление оттеснению материала при сдвиге зависит от безразмерной характеристики h/R — отношения глубины h внедрения единичной неровности, моделированной сферическим сегментом, к его радиусу R. Это отношение определяет механическую составляющую силы Т. в.
Большей частью описанное формоизменение упруго и рассеяние энергии обусловлено потерями на гистерезис. В пятнах касания возникают силы межмолекулярного взаимодействия, потери на преодоление которого оцениваются безразмерной характеристикой t/ss , где t — сдвиговое сопротивление молекулярной связи, ss — предел текучести основы. Молекулярное сдвиговое сопротивление t = t0 +bPr, где t0 — прочность мостика при отсутствии сжимающей нагрузки, Pr — фактическое давление на пятне касания, b — коэффициент упрочнения мостика. Каждое пятно касания (так называемая фрикционная связь) существует лишь ограниченное время, так как выступ выходит из взаимодействия. Продолжительность жизни фрикционной связи — важная характеристика, так как определяет температуру, развивающуюся при Т. в., износостойкость и др. Таким образом, процесс Т. в. представляет собой двойственный процесс — с одной стороны он связан с диссипацией энергии, обусловленной преодолением молекулярных связей, с другой — с формоизменением поверхностного слоя материала внедрившимися неровностями.
Общий коэффициент трения внешнего определяется суммой механической и молекулярной составляющих, где К — коэффициент, связанный с расположением выступов по высоте, a г — коэффициент гистерезисных потерь.
Из уравнения следует, что коэффициент Т. в. в зависимости от давления при постоянной шероховатости или от шероховатости при постоянном давлении переходит через минимум. При приработке пар трения устанавливается шероховатость, соответствующая минимуму коэффициента Т. в. Для эффективной работы пары трения существенно, чтобы поверхностный слой твёрдого тела имел меньшее сдвиговое сопротивление, чем глубжележащие слои. Это достигается применением различных жидких смазок. В этом случае трущиеся тела разделены слоем жидкости или газа, в котором проявляются объёмные свойства этих сред и вступают в силу законы жидкостного трения, характеризующиеся отсутствием трения покоя. Иногда необходимо иметь ослабленным поверхностный слой самого тела; это достигается применением поверхностно-активных веществ (присадки к смазкам), покрытий из мягких металлов, полимеров или созданием защитных плёнок с пониженным сопротивлением сдвигу.
В зависимости от характера деформирования поверхностного слоя различают трение внешнее при упругом и пластическом контактированиях и при микрорезании.
В определённых условиях, зависящих от нагрузки и механических свойств каждой пары трения, Т. в. переходит во внутреннее трение, для которого характерно отсутствие скачка скорости при переходе от одного тела к другому. Нагрузка, при которой Т. в. нарушается для данной пары трения, называется порогом внешнего трения.
Трение качения обусловлено: потерями на упругий гистерезис, связанный со сжатием материала под нагрузкой перед катящимся телом; затратами работы на передеформирование материала при формировании валика перед катящимся телом; преодолением мостиков сцепления.
Радиационные аварии Глобальная авария-событие на АЭС, при котором произошло разрушение всех барьеров безопасности с полным повреждением активной зоны, выбросом в окружающую среду большей части радиоактивных продуктов, н6акопленных в активной зоне реактора, на территорию АЭС и значительную территорию вокруг нее. Возможны острые лучевые поражения, длительное воздействие на окружающую среду и здоровье населения. По международной шкале классифицируется уровнем 7. Тяжелая авария-событие на АЭС, при котором произошло нарушение барьеров безопасности с повреждением активной зоны и выбросом в окружающую среду большого количества радиоактивных продуктов, накопленных в активной зоне, и в результате которого дозовые пределы для проектных аварий нарушены, а для запроектных — нет. Для ослабления серьезного влияния на здоровье необходимо введение планов мероприятий по защите персонала и населения в случае аварии в зоне радиусом 25 км, включающих эвакуацию населения. По международной шкале авария классифицируется уровнем 6. Авария с риском для окружающей среды-событие на АЭС, при котором произошли нарушения барьеров безопасности и выброс в окружающую среду продуктов деления и которое привело к незначительному превышению дозовых пределов для проектных аварий, радиологически эквивалентных выбросу порядка сотни терабеккерелей 131I, и разрушению большей части активной зоны. В некоторых случаях требуется частичное проведение плана аварийных мероприятий [местная йодная профилактика и (или) частичная эвакуация населения]. По международной шкале авария классифицируется уровнем 5. Авария в пределах АЭС-событие на АЭС, при котором произошло нарушение барьеров безопасности с частичным повреждением активной зоны реактора и выбросом радиоактивности и которое привело к переоблучению части персонала АЭС, при этом облучения населения выше установленных санитарных норм не произошло. Однако требуется контроль продуктов питания населения. По международной шкале авария классифицируется уровнем 4. Серьезное происшествие-событие на АЭС, при котором произошло нарушение барьеров или систем безопасности АЭС (без нарушения плотности защитной оболочки) или произошел выброс внутри АЭС. Меры по защите населения не требуются. Происшествие характеризуется большими загрязнениями радиоактивностью поверхностей на АЭС или дальнейшими отказами в системах безопасности, которые могут привести к более тяжелым последствиям. По международной шкале это происшествие классифицируется уровнем 3. происшествие средней тяжести-Событие на АЭС, при котором не произошло нарушения барьеров безопасности и отсутствует выброс радиоактивности из реакторной установки как во внешнюю среду, так и внутри АС, но существует риск выброса радиоактивности из-за потенциальной возможности нарушений защитных барьеров. Происшествие характеризуется отклонением режима работы АЭС от разрешенных условий нормальной эксплуатации или повреждением оборудования систем нормальной эксплуатации. По международной шкале данное происшествие классифицируется уровнем 2. Незначительное происшествие-событие на АЭС, при котором не произошло нарушения барьеров безопасности и отсутствует выброс радиоактивности из реакторной установки как во внешнюю среду, так и внутри АЭС. Событие характеризуется отклонениями режима работы АЭС от регламентных условий нормальной эксплуатации. По международной шкале происшествие оценивается уровнем 1. Общая характеристика последствий радиационных аварий Долго последствия аварий и катастроф на объектах с ядерной технологией, которые носят экологический характер оцениваются, главным образом, по величине радиационного ущерба, наносимого здоровью людей. Кроме того, важной количественной мерой этих последствий является степень ухудшения условий обитания и жизнедеятельности людей. Безусловно, уровень смертности и ухудшения здоровья людей имеет прямую связь с условиями обитания и жизнедеятельности, поэтому рассматриваются в комплексе с ними. Последствия радиационных аварий обусловлены их поражающими факторами, к которым на объекте аварии относятся ионизирующее излучение как непосредственно при выбросе, так и при радиоактивном загрязнении территории объекта; ударная волна (при наличии взрыва при аварии); тепловое воздействие и воздействие продуктов сгорания (при наличии пожаров при аварии). Вне объекта аварии поражающим фактором является ионизирующее излучение вследствие радиоактивного загрязнения окружающей среды.
Пошаговое объяснение:
х- количество единиц в числе
у-количество десятков.
данное двузначное число (10у+х).
Сумма цифр двузначного числа х+у=13.
Если поменять его цифры местами, то получим число (10х+у), которое меньше данного на 9.
Система уравнений:
х+у=13
10у+х-10х-у=9
у-х=1.
у=1+х.
х+1+х=13.
2х=12.
Х=6,
у=7.
Искомое число 76