Перед нами - ДУ Бернулли, где n=2. Полагаем y=u*v ⇒u'=y'=u'*v+u*v' и уравнение принимает вид: u'*v+u*v'+x*u*v=(1+x)*e^(-x)*u²*v², или v*(u'+x*u)+u*v'=(1+x)*e^(-x)*u²*v². Так как одну из функций u или v мы можем выбрать произвольно, то поступим так с u и потребуем, чтобы она удовлетворяла уравнению u'+x*u=0. Решая это ДУ, находим u=e^(-x²/2). Тогда уравнение принимает вид e^(-x²/2)*v'=(1+x)*e^(-x)*e^(-x²)*v², или v'=(1+x)*e^-(x²/2+x)*v². Деля обе части на v² и заменяя v на dv/dx, получаем уравнение dv/v²=(1+x)*e^-(x²/2+x)*dx. А так как (1+x)*dx=d(x²/2+x), то получаем уравнение dv/v²=e^-(x²/2+x)*d(x²/2+x). Интегрируя, находим -1/v=-e^-(x²/2+x)+С, или v=e^(x+x²/2)+C1, где C и C1 - произвольные постоянные. Тогда y=u*v=e^x+C1*e^(-x²/2). Используя условие y(0)=1, приходим к уравнению 1=1+C1, откуда C1=0. Отсюда искомое частное решение y=e^x.
Используем простую схему. Для начала мы находили НОК. Из частного случая решений мы знаем, что если одно из чисел делится нацело на другие, то наименьшее общее кратное этих чисел равно этому числу. Поэтому у нас должно быть 2 числа, чтобы одно делилось полностью на другое. Поэтому для числа "а" мы выбрали 420. Далее НОД. Вспоминаем что это такое. Это наибольший общий делитель. То есть такое число, на которое можно поделить оба числа. НОД у нас равен 30, мы проверяем, что 420 делится на 30 и поэтому число "b" у нас равно 30-ти.
ответ: y=e^x.
Пошаговое объяснение:
Перед нами - ДУ Бернулли, где n=2. Полагаем y=u*v ⇒u'=y'=u'*v+u*v' и уравнение принимает вид: u'*v+u*v'+x*u*v=(1+x)*e^(-x)*u²*v², или v*(u'+x*u)+u*v'=(1+x)*e^(-x)*u²*v². Так как одну из функций u или v мы можем выбрать произвольно, то поступим так с u и потребуем, чтобы она удовлетворяла уравнению u'+x*u=0. Решая это ДУ, находим u=e^(-x²/2). Тогда уравнение принимает вид e^(-x²/2)*v'=(1+x)*e^(-x)*e^(-x²)*v², или v'=(1+x)*e^-(x²/2+x)*v². Деля обе части на v² и заменяя v на dv/dx, получаем уравнение dv/v²=(1+x)*e^-(x²/2+x)*dx. А так как (1+x)*dx=d(x²/2+x), то получаем уравнение dv/v²=e^-(x²/2+x)*d(x²/2+x). Интегрируя, находим -1/v=-e^-(x²/2+x)+С, или v=e^(x+x²/2)+C1, где C и C1 - произвольные постоянные. Тогда y=u*v=e^x+C1*e^(-x²/2). Используя условие y(0)=1, приходим к уравнению 1=1+C1, откуда C1=0. Отсюда искомое частное решение y=e^x.