1. Составьте уравнение касательной к графику функции
У = 3х^2 – 4 в точке х0 = 2
2. Исследуйте функцию по схеме и постройте ее график
У = х^3 - 3 х^2 + 4
3. Площадь прямоугольного участка 144 м^2. При каких размерах участка длина окружающего его забота будет наименьшей.
"Опасные" точки сразу видны, это:
1)
2)
Эта числовая последовательность может быть сведена ко второму замечательному пределу для нахождения пределов:
Выделяем целую часть в дроби:
Используем свойство 2-го замечательного предела, но добавляем степени:
То есть мы степень не меняли: домножили и разделили.
Посчитаем, что получилось:
Итак:
1)
2)
3)
4)
По правило Лопиталя имеем: 0 (не расписывал, поскольку это очень много и неважно в данном случае, нас это не интересует).
Мы видим, что при стремлении к бесконечности с разными знаками, мы имеем конечное число. В "опасных" точках, скачков нет.
Используя свойства показательной функции, находим, что график делает скачок в некотором интервале (основание должно быть неотрицательным числом, если же взять число из интервала
Можно говорить, что данная числовая последовательность является неограниченной (из-за этого интервала).
Если же этого не учитывать, то данная числовая последовательность является ограниченной (это очень грубо).