М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации

Пусть x — число телевизоров на втором складе. На первом складе было в 2 раза больше телевизоров, чем на втором. После того как с первого склада взяли 25 телевизоров, а на второй привезли 13, телевизоров на обоих складах стало поровну. Какое из уравнений соответствует условию задачи?

2x−13=x+25
x:2−25=x+13
x−25=x:2+13
2x−25=x+13

👇
Ответ:

2х-25=х+13    все елементарно.

Пошаговое объяснение:

4,7(43 оценок)
Открыть все ответы
Ответ:
89109301839
89109301839
05.05.2021

Так как в прямоугольном треугольнике угол между двумя катетами прямой, а любые два прямых угла равны, то из первого признака равенства треугольников вытекает следствие.

Следствие 1. Если катеты одного прямоугольного треугольника соответственно равны катетам другого, то такие треугольники равны.

Далее, из второго признака равенства треугольников вытекает следствие.

Следствие 2. Если катет и прилежащий к нему острый угол одного прямоугольного треугольника соответственно равны катету и прилежащему к нему острому углу другого, то такие треугольники равны.

Рассмотрим еще два признака равенства прямоугольных треугольников.

Теорема 1. Если гипотенуза и острый угол одного прямоугольного треугольника соответственно равны гипотенузе и острому углу другого, то такие треугольники равны.

Доказательство. Из следствия 1 следует, что в таких треугольниках два других острых угла также равны, поэтому треугольники равны по второму признаку равенства треугольников. Теорема доказана.

Теорема 2. Если гипотенуза и катет одного прямоугольного треугольника соответственно равны гипотенузе и катету другого, то такие треугольники равны (рис.1).

4,4(97 оценок)
Ответ:
Vureshivatel
Vureshivatel
05.05.2021

Так как в прямоугольном треугольнике угол между двумя катетами прямой, а любые два прямых угла равны, то из первого признака равенства треугольников вытекает следствие.

Следствие 1. Если катеты одного прямоугольного треугольника соответственно равны катетам другого, то такие треугольники равны.

Далее, из второго признака равенства треугольников вытекает следствие.

Следствие 2. Если катет и прилежащий к нему острый угол одного прямоугольного треугольника соответственно равны катету и прилежащему к нему острому углу другого, то такие треугольники равны.

Рассмотрим еще два признака равенства прямоугольных треугольников.

Теорема 1. Если гипотенуза и острый угол одного прямоугольного треугольника соответственно равны гипотенузе и острому углу другого, то такие треугольники равны.

Доказательство. Из следствия 1 следует, что в таких треугольниках два других острых угла также равны, поэтому треугольники равны по второму признаку равенства треугольников. Теорема доказана.

Теорема 2. Если гипотенуза и катет одного прямоугольного треугольника соответственно равны гипотенузе и катету другого, то такие треугольники равны (рис.1).

4,6(96 оценок)
Это интересно:
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ