Пусть ширина окантовки х см, тогда ширина картинки с окантовкой равна (11 + х) см, длина - (33 + х) см, а площадь - (х + 11)(х + 33) см². Т.к. площадь по условию равна 779 см², то составим и решим уравнение
(11 + х)(33 + х) = 779,
363 + 11х + 33х + х² = 779,
х² + 44х + 363 = 779,
х² = 44х + 363 - 779 = 0,
х² + 44х - 416 = 0.
D = 44² - 4 · 1 · (-416) = 1936 + 1664 = 3600; √3600 = 60.
х₁ = (-44 - 60)/(2 · 1) < 0 - не подходит по условию задачи
x₂ = (-44 + 60)/(2 · 1) = 16/2 = 8
Значит, ширина окантовки равна 8 см.
ответ: 8 см.
Для уравнения нет решения
Пошаговое объяснение:
y=0
y=x
x=1
y=0
-x+y=0
x=1
запишем систему уравнения в матричном виде:
0 1 0
-1 1 0
1 0 1
1 столбец:
0
-1
1
делаем так, чтобы все элементы, кроме 3 го элемента равнялись нулю
-для этого берём 3 строку
[1 0 1]
и будем вычитать ее из других строк
из 2 ой строки вычитаем:
[-1- -1 1-0 --1]=[0 1 1]
получаем:
0 1 0
0 1 1
1 0 1
составляем элементарные уравнения из решенной матрицы и видим, что эта система уравнения не имеет решений
х2=0
х2-1=0
х1-1=0
получаем ответ:
данная система уравнений не имеет решений
ось ваше рішення)))))