Пошаговое объяснение:
1. Найдем угловые коэффициенты k1 и k2 для заданных прямых, выразив функцию 'y' через аргумент 'x':
1)
(3a + 2)x + (1 - 4a)y + 8 = 0;
(1 - 4a)y = -(3a + 2)x - 8;
(4a - 1)y = (3a + 2)x + 8;
y = (3a + 2)/(4a - 1) * x + 8/(4a - 1);
k1 = (3a + 2)/(4a - 1).
2)
(5a - 2)x + (a + 4)y - 7 = 0;
(a + 4)y = -(5a - 2)x + 7;
y = -(5a - 2)/(a + 4) * x + 7;
k2 = -(5a - 2)/(a + 4).
2. Прямые перпендикулярны, если угловые коэффициенты удовлетворяют условию:
k1 * k2 = -1;
(3a + 2)/(4a - 1) * (-(5a - 2)/(a + 4)) = -1;
(3a + 2)/(4a - 1) * (5a - 2)/(a + 4) = 1;
(3a + 2)(5a - 2) = (4a - 1)(a + 4);
15a^2 + 4a - 4 = 4a^2 + 15a - 4;
11a^2 - 11a = 0;
11a(a - 1) = 0;
a1 = 0;
a2 = 1.
ответ: 0 и 1.
Пусть скорость автобуса на участке АВ равна х км/ч, тогда скорость волги на этом же участке равна 4х км/ч. На участке ВС автобус разогнался до скорости х+40 км/ч, а волга до скорости 4х+40 км/ч, что, по условию задачи, в два раза быстрее стрости автобуса и равна (х+40)*2.
Получаем уравнение:
4х+40=(х+40)*2
4х+40=2х+80
4х-2х=80-40
2х=40
х=40/2
х=20
Скорость автобуса на участке АВ равна 20 км/ч.
Наибольшая скорость автобуса (на участке ВС) равна 20+40=60 км/ч
Наибольшая скорость волги (на участке ВС) равна 60*2=120 км/ч
Или так 20*4+40=80+40=120 км/ч
нет
Пошаговое объяснение: