Нуль на конце числа получается, если данное число можно разложить на множители, среди которых будут 2 и 5. Поэтому количество нулей на конце числа зависит от того, сколько 5 (пятёрок) входит в состав его множителей, так как на промежутке от 20 до 60 чётных чисел предостаточно.
Числа 20, 30, 35, 40, 45, 55, 60 содержат по одной 5. Всего 7.
Числа 25 и 50 содержат по две 5. Всего 4.
7+4=11
ответ: произведение всех натуральных чисел от 20 до 60 ВКЛЮЧИТЕЛЬНО заканчивается 11 нулями.
Если множитель, равный 60, не включать в данное произведение, то оно будет оканчиваться на 10 нулей.
0 на конце числа в том случае, если данное число можно разложить на множители, среди которых будут 2 и 5. Поэтому количество нулей на конце числа зависит от того, сколько 5 (пятёрок) входит в состав его множителей, так как на промежутке от 20 до 60 чётных чисел предостаточно.
Числа 20, 30, 35, 40, 45, 55, 60 содержат по одной 5. Всего 7.
Числа 25 и 50 содержат по две 5. Всего 4.
7+4=11
ответ: произведение всех натуральных чисел от 20 до 60 ВКЛЮЧИТЕЛЬНО заканчивается 11 нулями.
Если множитель, равный 60, не включать в данное произведение, то оно будет оканчиваться на 10 нулей.
Площадь осевого сечения равна: S=h*(R1+R2)/2=4*(3+6)/2=18 (см^2).
Формула площади боковой поверхности: S=Пи*(R1+R2)*L, где L - образующая усеченного конуса.
Находим образующую: L=√(h^2+(R2-R1)^2)=√(16+9)=√25=5 (см) .
Находим площадь боковой поверхности: S=3,14*(3+6)*5=141,3 (см^2).