6(ост1) или 6,1(6)
Пошаговое объяснение:
если укладывать в ряд по 10 плиток, то для квадратной площадки плиток не хватает"
Значит плиток меньше, чем 100 штук.1(
При укладывании по 8 плиток в неполном ряду может быть только 7 плиток, т.к. при укладывании по 9 плиток получается неполный ряд, в котором на 6 плиток меньше. То есть 1 плитка.
Нужно найти такое число меньше 100, которое при делении на 8 даёт остаток 7, а при делении на 9 - остаток 1. Это число 55.
55:8 = 6 (ост. 7)
55:9 = 6 (ост. 1)
или 6,1(6)
\lim_{n \to \infty} \frac{x^2-4x-5}{x^2-2x-3}= [\frac{\infty}{\infty}]=\lim_{n \to \infty} \frac{ \frac{x^2}{x^2}- \frac{4x}{x^2}- \frac{5}{x^2}}{ \frac{x^2}{x^2}- \frac{2x}{x^2}- \frac{3}{x^2}}= \lim_{n \to \infty} \frac{1- \frac{4}{x}- \frac{5}{x^2}}{1- \frac{2}{x}- \frac{3}{x^2}}= \lim_{n \to \infty} \frac{1-0-0}{1-0-0}=1
Второй вариант решения:
\lim_{n \to \infty} \frac{x^2-4x-5}{x^2-2x-3}= [\frac{\infty}{\infty}]= \lim_{n \to \infty} \frac{x^2-4x}{x^2-2x}= \lim_{n \to \infty} \frac{x(x-4)}{x(x-2)} = \lim_{n \to \infty} \frac{x-4}{x-2}= \lim_{n \to \infty} \frac{x}{x}=1
Третий вариант решения:
\lim_{n \to \infty} \frac{x^2-4x-5}{x^2-2x-3}=[\frac{\infty}{\infty}]= \lim_{n \to \infty} \frac{(x^2-4x-5)'}{(x^2-2x-3)'}= \lim_{n \to \infty} \frac{(2x-4)'}{(2x-2)'}= \frac{2}{2}=1