М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
bossmakswell
bossmakswell
08.02.2020 21:59 •  Математика

На рис. ВО=МО, <АВС=45*,<ВСМ=50*, <АОС=95*. Знайдіть<М. Доведіть, що трикутник АВО= СМО​

👇
Открыть все ответы
Ответ:
Spartak1935
Spartak1935
08.02.2020
1) sin(2b)=2sin(b) * cos(b)
cos(b) - знаем
sin^2(b)=1-cos^2(b)=1-576/625=49/625
Перед тем, как извлечь корень из синуса, определим его знак: поскольку угол b принадлежит первой четверти, а первой четверти синус положителен, то sin(b)=корень квадратный из (49/625) = 7/25.

sin(2b)=2sin(b) * cos(b) = 2 * 7/25 * 24/25 = 336/625

2) Выведем формулу для нахождения косинуса половинного угла:
cos(a)=cos^2(a/2)-sin^2(a/2) - формула косинуса двоенного угла
Но sin^2(a/2) нам не известен, однако его можно заменить на 1-cos^2(a/2) (по основному тригонометрическому тождеству) тогда имеем:

cos(a)=cos^2(a/2)-(1-cos^2(a/2))=2cos^2(a/2)-1. Перебросим (-1) в левую часть и поделим равенство на (2):

cos^2(a/2)=(1+cos(a))/2

cos(a) нам не известен, но зная sin(a), найдем его:

cos^2(a)=1-sin^2(a)=1-9/16=7/16
cos(a)=sqrt(7)/4, знак +, поскольку a лежит в первой четверти, а sqrt означает "Корень квадратный"

Вернемся к формуле:
cos^2(a/2)=(1+sqrt(7)/4)/2=(4+sqrt(7)/8
cos(a/2)=sqrt((4+sqrt(7))/8)

3)cos(a-b)=cos(a)*cos(b)+sin(a)*sin(b)=sqrt(7)/4*24/25 + 3/4 * 7/25=6sqrt(7)/25 + 21/100 = (24sqrt(7)+21)/100
4,8(60 оценок)
Ответ:
Lizevette
Lizevette
08.02.2020
Построим таблицу 2n×2n (см. рис). Столбцы и строки обозначают вершины (они занумерованы числами от 1 до 2n). Если какие-то вершины соединены ребром, то на соответствующем пересечении столбца и строки напишем 1. Например, если вершины 4 и 2 соединены ребром, то на пересечении 4 столбца и 2 строки напишем 1. Поскольку 4 столбец и четвертая строка отвечают за одну и ту же вершину, можем обрезать таблицу пополам (по линии диагонали). Заметим, если три вершины образуют треугольник, то единицы, соответствующие этим соединениям образуют прямоугольный треугольник (если мысленно их соединить в таблице). Также, любой двойке единиц в конкретном столбце соответствует единственная единица в соответствующей строке, такая что они втроем образуют треугольник. Например, на рисунке красные единицы образуют треугольные, а синие - нет. При этом двойке красных единиц в 4-ом столбце соответствует единственная 1-ца, такая, что они вместе образуют треугольник (если бы третья единица была в 3-ем столбце, 1 строке, то треугольник не образовывался). Значит общее число треугольников в графе соответствует сумме комбинаций двоек в каждом столбце. Пусть в первом столбце n₁ единиц, во втором n₂ и т.д. Значит общее число треугольников равно \frac{n_{1}(n_{1}-1)}{2}+ \frac{n_{2}(n_{2}-1)}{2}+...+ \frac{n_{2n}(n_{2n}-1)}{2}= \frac{n_{1}^{2}+n_{2}^{2}+...+n_{2n}^{2}-n^{2}-1}{2}(*); Заметим, что минимальное значение выражения A²-A для натуральных чисел равно 1. Раз  n_{1}^{2}+n_{2}^{2}+...+n_{2n}^{2}-n_{1}-n_{2}-...-n_{2n}=2n, то с учетом (*), минимальное количество треугольников равно 2n/2 = n; То есть ясно, что хотя бы один треугольник образуется
(это лемма турана) в графе 2n вершин и n^2+1 ребро. доказать, что в графе есть хотя бы один треуголь
(это лемма турана) в графе 2n вершин и n^2+1 ребро. доказать, что в графе есть хотя бы один треуголь
4,4(95 оценок)
Новые ответы от MOGZ: Математика
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ