Обозначим центр сферы O, радиус сферы R, а плоскость сечения α. Обозначим центр окружности сечения O' и ее радиус r. Расстояние от O до O' равно ρ. Длина окружности сечения L равна 2πr.
Возьмем плоскость β так, чтобы она была перпендикулярна α и содержала центр сферы. Плоскости α и β пересекаются по прямой a, которая пересекает сферу в точках A и B. OA = OB = R. При этом, точки A и B являются диаметрально-противоположными точками окружности сечения O'. Значит, O'A = O'B = r. При этом точка O' лежит в плоскости β.
С разными знаменателями: 5 1/2 + 7/8= 5 11/8 или 6 3/8 целых То есть, чтобы сложить смешанное число с обыкновенной дробью, нужно целую часть переписать (в данном случае это 5 целых), затем найти общий знаменатель (то есть такое число, которое делится и на 8 и на 2, это 2, так как 8:2=4, 2:2=1, но это в данном случае). Потом написать дополнительные множители, для этого общий знаменатель 8 делим вначале на 2, затем на 8. 8:2=4 (дополнительный множитель к первой дроби), 8:8=1 (дополнительный множитель ко второй дроби). Умножаем числитель первой дроби на её дополнительный множитель, то есть 1 (числитель 1 дроби) умножаем на 4 (дополнительный множитель 1 дроби). Тоже самое делаем со второй дробью. 7 (числитель 2 дроби) умножаем на 1 (дополнительный множитель 2 дроби).
Обозначим центр окружности сечения O' и ее радиус r.
Расстояние от O до O' равно ρ.
Длина окружности сечения L равна 2πr.
Возьмем плоскость β так, чтобы она была перпендикулярна α и содержала центр сферы.
Плоскости α и β пересекаются по прямой a, которая пересекает сферу в точках A и B. OA = OB = R.
При этом, точки A и B являются диаметрально-противоположными точками окружности сечения O'. Значит, O'A = O'B = r. При этом точка O' лежит в плоскости β.
Рассмотрим треугольник OO'A.
OO' ⊥ AB, OA = R, O'A = r, OO' = ρ
По теореме Пифагора имеем равенство: R² = r² + ρ² ⇒ r² = R² - ρ².
r² = 14² - 8² = (14-8)(14+8) = 6*22 = 12*11.
r = √(12*11) = 2√33.
L = 2πr = 2·2√33·π = 4π√33