делаем рисунок. Проведем диагонали ВD и АС ромба. Соединим середины сторон a,b,c,d попарно. Получившийся четырехугольник - прямоугольник, т.к. его стороны, являясь средними линиями треугольников, на которые делит ромб каждая диагональ - параллельны диагоналям ромба - основаниям этих треугольников.А диагонали ромба пересекаются под прямым углом,и поэтому углы четырехугольника также прямые. Сумма углов параллелограмма ( а ромб - параллелограмм), прилегающих к одной стороне, равна 180° Так как тупой угол ромба равен 120°, острый равен 60° Пусть меньшая диагональ d, большая -D Диагональ d равна стороне ромба, так как образует с двумя сторонами ромба равносторонний треугольник ABD с равными углами 60° . Большая диагональ D в два раза длиннее высоты АО равностороннего треугольника AB. АО равна стороне ромба АВ, умноженной на синус угла 60° АО=4v3:2=2v3 D=АС=4v3 Стороны прямоугольника ( на рисунке красного цвета) равны: ширина ab равна половине BD и равна 2 см длина bc равна половине АС и равна 2v3 см S abcd=2*2v3=4v3
1) Число достать 5 вопросов из 25 равно C(25,5)=53130 Разобьем вопросы на две группы: а) 20 подготовленных вопросов б) 5 неподготовленных 2) Число достать 3 подготовленных вопроса и 2 неподготовленных равно C(20,3)*C(5,2). Число достать 4 подготовленных вопроса и 1 неподготовленный равно C(20,4)*C(5,1). Число достать 5 подготовленных вопросов и 0 неподготовленных равно C(20,5)*C(5,0). Суммарное число сдать экзамен - сумма где достаются не менее 3 подготовленных вопросов. То есть C(20,3)*C(5,2)+C(20,4)*C(5,1)+C(20,5)*C(5,0)=51129 Вероятность успешной сдачи экзамена равна C(20,3)*C(5,2)+C(20,4)*C(5,1)+C(20,5)*C(5,0)/С(25,5)=51129/53130=741/770≈0.96
y' = 48x^2-72x+24 это производная
Нет горизонтальных асимптот
Нет наклонной асимптоты
Пересечение с осью y y=-9
корни x=1.5
Пошаговое объяснение: