1. Найти производные функций а) у=1−х2+х3−х4+х5 б) у=sin 3x в) у=х2+1х2−1 2. Найти уравнение касательной к графику функции: f(x) = x3 – 2x2 + 1 в точке х0 = 2 3 Найдите наименьшее или наибольшее значение функции на отрезке [1;4] у = х3 – 3х2 + 2
1 Первообразная это функция f(x) 2 первое правило Если F есть первообразная для f, a k постоянная то функция kF первообразная для kf (kf)’=kF’=kf 3 функция y=f(x) определенная при х=а, аналогично справедливому равенству f(x)=dx =0 4 f(x)dx=F(x)+C если F’(x)=f(x) Неопределённым интегралом функции f(x) называется совокупность всех первообразных этой функции 5 ответ на фотке 6 Пусть функция y=f(x) непрерывна на отрезке [a, b] и F(x) одна из первообразных функции на это отрезке тогда справедливо формула Ньютона Лейбница f(х)dx=F(b)-F(a)
1 Первообразная это функция f(x) 2 первое правило Если F есть первообразная для f, a k постоянная то функция kF первообразная для kf (kf)’=kF’=kf 3 функция y=f(x) определенная при х=а, аналогично справедливому равенству f(x)=dx =0 4 f(x)dx=F(x)+C если F’(x)=f(x) Неопределённым интегралом функции f(x) называется совокупность всех первообразных этой функции 5 ответ на фотке 6 Пусть функция y=f(x) непрерывна на отрезке [a, b] и F(x) одна из первообразных функции на это отрезке тогда справедливо формула Ньютона Лейбница f(х)dx=F(b)-F(a)
2 первое правило
Если F есть первообразная для f, a k постоянная то функция kF первообразная для kf
(kf)’=kF’=kf
3 функция y=f(x)
определенная при х=а, аналогично справедливому равенству
f(x)=dx =0
4 f(x)dx=F(x)+C если F’(x)=f(x)
Неопределённым интегралом функции f(x) называется совокупность всех первообразных этой функции
5 ответ на фотке
6 Пусть функция y=f(x) непрерывна на отрезке [a, b] и F(x) одна из первообразных функции на это отрезке тогда справедливо формула Ньютона Лейбница f(х)dx=F(b)-F(a)