М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
alinkachehovska
alinkachehovska
23.07.2020 20:14 •  Математика

В прямой треугольной призме стороны основания равны 10 см, 17 см и 21 см, а высота призмы — 18 см. вычислить площадь полной поверхности и объём

👇
Ответ:
ichkinaeozrvu1
ichkinaeozrvu1
23.07.2020

Sполн=1032 см²

V=1512 см3

Пошаговое объяснение:

V=Sосн*H

S oсн=√ (p * (p-a) * (p-b) * (p-c))

p=P/2. P=a+b+c

p = (10+17+21) / 2

p=24

S=√ (24 * (24-10) * (24-17) * (24-21))

S=84

V=84*18

Площадь боковой поверхности треугольной призмы будет:

Sбок=18*(10+17+21)=864 см²

Для нахождения площади основания можно воспользоваться формулой Герона для нахождения площади треугольника, когда известны только длины его сторон, но неизвестна высота:

S=√p(p-a)(p-b)(p-c) (под корнем всё выражение!), где a,b,c- стороны треугольника, p- полупериметр треугольника, p=(a+b+c)/2.

p=(10+17+21)/2=24

S=√24(24-10)(24-17)(24-21)=√24*14*7*3=√7056=84 см²

Полная поверхность призмы равна:

Sполн=Sбок+2Sосн

Sполн=864+2*84=864+168=1032 см²

Sполн=1032 см²

4,6(58 оценок)
Открыть все ответы
Ответ:
dariak98
dariak98
23.07.2020

ответ: (2, -1, 1)

Пошаговое объяснение: Запишем систему уравнений в матричном виде.

\left[\begin{array}{cccc}3&-1&2&9\\2&3&-1&0\\2&4&3&3\end{array}\right]

Приведем к ступенчатому виду. Применяем операцию R_1=\frac{1}{3} R_1 к R_1 (к 1 строке) для того, чтобы сделать некоторые элементы строки равными 1.

\left[\begin{array}{cccc}1&-\frac{1}{3} &\frac{2}{3} &3\\2&3&-1&0\\2&4&3&3\end{array}\right]

Применяем операцию R_2=-2\times R_1+R_2 к R_2 (ко 2 строке) для того, чтобы сделать некоторые элементы строки равными 0.

\left[\begin{array}{cccc}1&-\frac{1}{3} &\frac{2}{3} &3\\2&3&-1&0\\2&4&3&3\end{array}\right]

Применяем операцию R_3=-2\times R_1+R_3 к R_3 (к 3 строке) для того, чтобы сделать некоторые элементы строки равными 0.

\left[\begin{array}{cccc}1&-\frac{1}{3} &\frac{2}{3} &3\\0&\frac{11}{3} &-\frac{7}{3}&-6 \\0&\frac{14}{3} &\frac{5}{3} &-3\end{array}\right]

Применяем операцию R_2=\frac{3}{11}R_2 к R_2 для того, чтобы сделать некоторые элементы строки равными 1.

\left[\begin{array}{cccc}1&-\frac{1}{3} &\frac{2}{3} &3\\0&1&-\frac{7}{11} &-\frac{18}{11} \\0&\frac{14}{3} &\frac{5}{3} &-3\end{array}\right]

Применяем операцию R_1=\frac{1}{3} R_2+R_1 к R_1 для того, чтобы сделать некоторые элементы равными 0.

\left[\begin{array}{cccc}1&0&\frac{5}{11}&\frac{27}{11} \\0&1&-\frac{7}{11}&-\frac{18}{11} \\0&\frac{14}{3} &\frac{5}{3} &-3\end{array}\right]

Применяем операцию R_3=-\frac{14}{3} R_2+R_3 к R_3 для того, чтобы сделать некоторые элементы строки равными 0.

\left[\begin{array}{cccc}1&0&\frac{5}{11}&\frac{27}{11} \\0&1&-\frac{7}{11}&-\frac{18}{11} \\0&0&\frac{51}{11} &\frac{51}{11} \end{array}\right]

Применяем операцию R_3=\frac{11}{51} R_3 к R_3 для того, чтобы сделать некоторые элементы строки равными 1.

\left[\begin{array}{cccc}1&0&\frac{5}{11}&\frac{27}{11} \\0&1&-\frac{7}{11}&-\frac{18}{11} \\0&0&1 &1 \end{array}\right]

Применяем операцию R_1=-\frac{5}{11}R_3+R_1 к R_1 для того, чтобы сделать некоторые элементы строки равными 0.

\left[\begin{array}{cccc}1&0&0&2 \\0&1&-\frac{7}{11}&-\frac{18}{11} \\0&0&1 &1 \end{array}\right]

Применяем операцию R_2=\frac{7}{11}R_3+R_2 к R_2 для того, чтобы сделать некоторые элементы равными 0.

\left[\begin{array}{cccc}1&0&0&2\\0&1&0&-1\\0&0&1&1\end{array}\right]

Воспользуемся полученной матрицей для того, чтобы описать итоговое решение системы уравнений.

x=2

y=-1

z=1

Решением является множество упорядоченных пар, которые удовлетворяют системе.

(2, -1, 1)

4,5(49 оценок)
Ответ:
ДАНО
ПЕРВАЯ система уравнений.
1) 8*x - 2*y = 11
2) 9*x + 4*y = 5.
Почти по методу Гаусса -  приравняем коэффициенты при У - умножим 1) на 2.
3) 16*x - 4*y = 22
Теперь сложим уравнения 2) и 3)
4) 25*х = 11 + 5 = 16
Находим неизвестное - Х - делением.
5) х = 16/25 = 0,64 - ОТВЕТ
Подставим в ур. 1)
6)  8*0,64 - 2*у = 11 
Упрощаем
7) 2*у = 5,12 -11  = - 5,88
Находим неизвестное - У
8) у = - 5,88 : 2 = - 2,94 - ОТВЕТ
ВТОРАЯ система уравнений.
1) 3*y - z = 5
2) 5*y + 2*z = 12.
На этот раз применим -МЕТОД ПОДСТАНОВКИ.
Из ур.1) выражаем неизвестное - z
3) z = 3*y - 5.
Подставили в ур. 2)
4) 5*y + 2*(3*y-5) = 12 = 5*y + 6*y - 10
Упрощаем 
5) 11*y = 12+10 =  22
Находим неизвестное - у.
6) у = 22/11 = 2 - ОТВЕТ
Возвращаемся к подстановке - ур.3)
7) z = 3*y - 5 = 6 -5 = 1 - ОТВЕТ
4,4(45 оценок)
Новые ответы от MOGZ: Математика
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ