Доказал ее великий Леонард Эйлер. Это формула
"е" в степени произведения "и" на "пи" плюс один равно 0
Здесь есть все важные области математики:
"пи" из геометрии
"и" из алгебры
"е" из математического анализа
единица из арифметики
2) Формула ГеронаФормула для вычисления площади треугольника со сторонами а, b и с
где
так называемый "полупериметр"
Корень из произведения полупериметра на разность полупериметра и первой стороны на разность полупериметра и второй стороны на разность полупериметра и третьей стороны
3) Формула КарданоМатематики очень долго пытались найти решение уравнений третьей степени, и Кардано смог найти такое
Решение уравнения
где
А Q в свою очередь равно
Корни многочлена 3 степени относительно х при старшем коэффициенте 1 и коэффициенте при х² 0 выражаются либо суммой а и б, или суммой или разности их полусуммы со знаком минус и их полуразности, умноженной на корень из минус трех, сами же эти числа равны кубическому корню из отрицательной половины свободного члена плюс или минус некоторое число Q, которое равно сумме куба трети коэффициента перед первой степенью и квадрата половины свободного члена
4) Бином НьютонаПростая формула для раскрытия скобок при натуральных n
Сумма степеней а от n до 0 умноженные на степень b от 0 до n умноженные на число сочетаний из n по текущий член многочлена
5) Основная теорема арифметикиЛюбое натуральное число больше 1 можно разложить в произведение степеней простых чисел единственным образом с точностью до перестановки множителей
6) Основное Тригонометрическое Тождество (ОТТ)Эту формулу все знают со школы:
Сумма квадратов синуса и косинуса одного аргумента равна 1
7) Формула Эйлера для любого плоского графаЧисло вершин в любом графе минус число ребер в этом же графе плюс число граней в этом же графе равно 2 для любого графа
8) Первый замечательный пределОтношение синуса к его аргументу при аргументе стремящимся к 0 равно 1 для любого аргумента
9) Второй замечательный пределсумма 1 и х в степени обратной х при х стремящимся к 0 равно е
сумма 1 и обратной х в степени х при х стремящимся к бесконечности равно е
10) Разложение числа пи в рядПи равно учетверенной знакочередующейся сумме чисел обратных нечетным
Первая бригада - 90 мешков,
Вторая бригада - 60 мешков.
Пошаговое объяснение:
Общее количество мешков: 150 шт.
Собрала картофеля первая бригада - 4500 кг
Собрала картофеля вторая бригада - 3000 кг
Сначала найдём, сколько килограмм картофеля вместилось в 150 мешков:
4500 + 3000 = 7500 кг
Теперь задачу можно решить пропорцией. Возьмём, к примеру, первую бригаду:
7500 кг = 150 шт.
4500 кг = х шт.
х =
= 90 шт.
Количество мешков, собранных второй бригадой, можно посчитать также, но мы поступим иначе:
150 - 90 = 60 шт.
От общего количество отняли известное.
Задача решена!