ответ:
х₁ = х₂ = -12, х₃ = х₄ = -0,8
пошаговое объяснение:
существует четыре варианта:
1) при котором подмодульное значение первого модуля отрицательное, а второго положительное:
|3x + 8| = |4 - 2x|
-3x - 8 = 4 - 2x
-3x + 2x = 4 + 8
-x = 12
x₁ = -12
2) при котором подмодульное значение первого модуля положительное, а второго отрицательное:
|3x + 8| = |4 - 2x|
3x + 8 = 2х - 4
3x - 2x = -4 - 8
x = -12
x₂ = -12
3) при котором оба подмодульных выражения положительные:
|3x + 8| = |4 - 2x|
3x + 8 = 4 - 2x
3x + 2x = 4 - 8
5x = -4
x₃ = -0,8
4) при котором оба подмодульных выражения отрицательные:
|3x + 8| = |4 - 2x|
-3x - 8 = 2х - 4
-3x - 2x = -4 + 8
-5x = 4
x₄ = -0,8
ответ:
пошаговое объяснение:
обозначим скорость течения реки «х». тогда скорость лодки по течению «7 + х», а против течения «7 – х». по формуле t = s / v выразим время, которое затратила лодка на путь в 24 км по течению:
24 / (7 + х).
а время на путь против течения:
24 / (7 – х).
на путь туда и обратно лодка потратила 7 ч. составим и решим уравнение:
24 / (7 + х) + 24 / (7 – х) = 7;
((24 * (7 – х) + 24 * (7 + х) – 7 * (7 + х) * (7 - х)) / ((7 + х) * (7 - х)) = 0;
х ≠ - 7; х ≠ 7;
168 – 24х + 168 + 24х – 343 + 7х2 = 0;
7х2 -7 = 0;
х2 -1 = 0;
х1 = -1 - не удовлетворяет;
х2 = 1 (км/ч).
ответ: скорость течения реки 1 км/ч.
1 кг = 1000 г
1) Пропорция: 1000 г раствора - 100%
х г соли - 5%
х = 1000 · 5 : 100 = 50 г - масса соли в растворе;
2) Пропорция: х г раствора - 100%
50 г соли - 8%
х = 50 · 100 : 8 = 625 г - масса получившегося раствора;
3) 1000 - 625 = 375 г - столько воды надо выпарить.
ответ: 375 г воды.