М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
Vados2002k
Vados2002k
03.02.2023 14:37 •  Математика

Данные числа Рыбак выловил 5 рыб (A, B, C, D, E), каждая из которых имеет разный вес: - A весит в два раза больше чем B;
- B весит в четыре с половиной раза больше чем C;
- C весит вдвое меньше чем D;
- D весит вдвое меньше чем E;
- E весит меньше A, но больше C.
Определите самую легкую рыбу

👇
Ответ:
Браство
Браство
03.02.2023

В . Потому что она весит меньше всех

Пошаговое объяснение:

4,4(29 оценок)
Открыть все ответы
Ответ:
dianashabaneh
dianashabaneh
03.02.2023
Единицы измерения должны быть одинаковые, поэтому минуты переводим в часы
6мин/60=1/10=0,1часа
х-скорость  плановая
42/х-время по плану

х+10-скорость реальная
42/(х+10)-время реальное (знаменатель увеличился, т.е. время уменьшилось по сравнению с планом)
и это время меньше планового на 0,1ч. Т.е. если мы к реальному времени прибавим 0,1,то получим время по плану

42/х=42/(х+10) + 0,1
дальше умножаем право и лево уравнения на х(х+10)
  
42х(х+10)/х=42х(х+10)/(х+10) + 0,1х(х+10)
тут 42х(х+10)/х сокращаются иксы,остается 42(х+10)
тут 42х(х+10)/(х+10) сокращаются (х+10),остается 42х
Получается
42(х+10)=42х+ 0,1х(х+10) открываем скобки
42х+420=42х+0,1х²+х далее переносим всё в одну сторону и решаем квадратное уравнение
0,1х²+х-420=0
D  = 1² - 4·0.1·(-420) = 1 + 168 = 169
x1 = (-1 - √169)/(2·(0.1)) = (-1 - 13)/0.2 = -14/0.2 = -140/2=-70 -не подходит
x1 = (-1 + √169)/(2·(0.1)) = (-1 + 13)/0.2 =12/0.2 =120/2=60 км/ч-скорость плановая
60+10=70км/ч-скорость реальная (после переезда)
4,7(92 оценок)
Ответ:
Flyzi
Flyzi
03.02.2023

ответ:

исследовать функцию  y=-x^4+8x^2-9  и построить ее график.

решение:

1. область определения функции - вся числовая ось.

2. функция  y=-x^4+8x^2-9  непрерывна на всей области определения. точек разрыва нет.

3. четность, нечетность, периодичность:

  так как переменная имеет чётные показатели степени, то функция чётная, непериодическая.

4. точки пересечения с осями координат:  

ox: y=0,  -x^4+8x^2-9=0,  заменим  x^2 = n.

квадратное уравнение, решаем относительно n:  

ищем дискриминант:

d=8^2-4*(-1)*(-9)=64-4*(-1)*(-9)=64-(-4)*(-9)=64-(-4*(-9))=64-(-(-4*9))=64-(-(-36))=64-36=28;

дискриминант больше 0, уравнение имеет 2 корня:

n₁=(√28-8)/(2*(-1)) = (√28-8)/(-2) = -(2√7/2-8/2)= 4 -√7 ≈ 1,354249;

n₂ = (-√28-8)/(2*(-1)) = (-2√7-8)/(-2)= 4 + √7 ≈ 6,645751.

обратная замена: х =  √n.

x₁ = √1,354249 = 1,163722,     x₂ =   -1,163722.

  x₃ = √6,645751 = 2,57793,       x₄ = -2,577935.

получаем 4 точки пересечения с осью ох:

(1,163722; 0),   (-1,16372; 0),   (2,57793; 0),   (-2,57793; 0).

  x₃ = √6,645751 =  2,57793,

oy: x = 0 ⇒ y = -9. значит (0; -9) - точка пересечения с осью oy.

5. промежутки монотонности и точки экстремума:

y=-x^4+8x^2-9.

y'=0 ⇒-4x³+16x = 0 ⇒ -4x(x²-4) = 0.

имеем 3 критические точки: х = 0, х = 2 и х = -2.

определяем знаки производной вблизи критических точек.

x =     -3       -2       -1       0       1       2       3

y' =     60       0       -12       0       12       0       -60.

где производная положительна - функция возрастает, где отрицательна - там убывает. точки, в которых происходит смена знака и есть точки экстремума - где производная с плюса меняется на минус - точка максимума, а где с минуса на плюс - точки минимума.

минимум функции в точке:   x = 0.

максимумы функции в точках:

x = -2.

x = 2.

убывает на промежутках (-2, 0] u [2, +oo).

возрастает на промежутках (-oo, -2] u [0, 2).

  6. вычисление второй производной: y''=-12х² + 16  , 

найдем точки перегибов, для этого надо решить уравнение

\frac{d^{2}}{d x^{2}} f{\left (x \right )} = 0

(вторая производная равняется нулю),

корни полученного уравнения будут точками перегибов для указанного графика функции:  

\frac{d^{2}}{d x^{2}} f{\left (x \right )} = 0

вторая производная   4 \left(- 3 x^{2} + 4\right) = 0.

решаем это уравнение

корни этого уравнения

x_{1} = - \frac{2 \sqrt{3}}{3}.

x_{2} = \frac{2 \sqrt{3}}{3}.

7. интервалы выпуклости и вогнутости:

найдём интервалы, где функция выпуклая или вогнутая, для этого посмотрим, как ведет себя функция в точках перегибов:

вогнутая на промежутках [-2*sqrt(3)/3, 2*sqrt(3)/3]

выпуклая на промежутках (-oo, -2*sqrt(3)/3] u [2*sqrt(3)/3, oo)

4,4(58 оценок)
Это интересно:
Новые ответы от MOGZ: Математика
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ