Если исходить из классического определения луча, как геометрического множества точек прямой, лежащих по одну сторону от данной точки, и рассматривая данную задачу для лучей, лежащих на одной плоскости α, то 1) непересекающиеся лучи (не имеющие общих точек) должны быть параллельны друг другу, могут быть однонаправленными или разнонаправленными, и построить их можно бесконечное (математически) множество - пример на прилагаемом рис обозначен красным цветом; 2) пересекающиеся под прямым углом лучи будут иметь общую точку O, причём угол между ними будет составлять 90° и построить таких лучей также можно беконечное множество - пример на прилагаемом рис обозначен зелёным цветом.
Чтобы снова оказаться вместе в точке старта, каждому из велосипедистов нужно проехать какое-то целое количество кругов таким образом, чтобы у всех троих совпало затраченное на прохождение этих кругов время. Предположим, каждый из них проехал по 10 кругов. Чтобы понять, могли ли они за эти 10 кругов встретится в точке старта, составим таблицу, в которую внесём время для прохождения каждым из велосипедистов конечного количества кругов. (см. приложенный файл) Как видно из таблицы, время совпадёт тогда, когда первый проедет 7 кругов, второй - 5 кругов, третий за это же время успеет проехать 3 полных круга. Таким образом, вместе в точке старта они окажутся через 105 минут.
Между -1 и -2. См фото.