nP=4*2=8
Пошаговое объяснение:
х³-у³=7(х-у), (1)
(х+1)(у+1)=6. (2)
преобразуем (1):
так как х³-у³=(х-у)(х²+у²+ху)→
(х-у)(х²+у²+ху) = 7(х-у),
(х-у)(х²+у²+ху) - 7(х-у) = 0,
(х-у)(х²+у²+ху-7)=0
х-у=0 или х²+у²+ху-7=0
1) х-у=0тогда:
х-у=0, → х=0+у=у
(х+1)(у+1)=6; (из (2) )
или
(у+1)(у+1)=6
(у+1)²=6
у+1=±√6
у1=√6-1, х1=у=√6-1 →
→ х1*у1=(√6-1)²=6+1-2√6=7-2√6
у2=-√6-1, х2=у=-√6-1 →
→ х2*у2=(-√6-1)²=(√6+1)²=6+1+2√6=7+2√6
2) х²+у²+ху-7=0тогда:
х²+у²+ху-7=0,
(х+1)(у+1)=6; (из (2) )
х²+у²+ху-7=0,
ху+у+х+1=6;
х²+у²+ху-7=0
+
ху+у+х-5=0
х²+у²+ху-7+ху+у+х-5=0
(х²+у²+ху+ху)+(у+х)+(-7-5)=0
(х+у)²+(х+у)-12=0
Пусть х+у=а,
тогда а²+а-12=0
Д=1²-4*1*(-12)=1+48=49=7²>0
а1=(-1+7)/(2*1)=6/2=3
а2=(-1-7)/(2*1)=-8/2=-4
Выход из замены: а=х+у
а1=х+у=3 →
х+у=3,
ху+у+х-5=0;
х+у=3,
ху+3-5=0;
х+у=3,
ху-2=0;
у=3-х,
(х)*(3-х)-2=0
3х-х²-2=0
-3х+х²+2=0 или х²-3х+2=0
Д=(-3)²-4*1*2=9-8=1=1²>0
х3=(-(-3)+1)/(2*1)=4/2=2 у3=3-х=3-2=1→→ х3*у3= 2*1 =2
х4=(-(-3)-1)/(2*1)=2/2=1, у3=3-х=3-1=2→→ х4*у4=1*2 =2
а2=х+у=-4 →
х+у=-4,
ху+у+х-5=0;
х+у=-4,
ху-4-5=0;
х+у=-4,
ху-9=0;
у=-4-х,
(х)*(-4-х)-9=0
-4х-х²-9=0 или х²+4х+9=0
Д=(4)²-4*1*9=16-36=-20<0-нет решений
Сравниваем
х1*у1=7-2√6
х2*у2=7+2√6
x3*y3=2
x4y4=2
и определяем наименьшее из них.
Очевидно,что х1у1<х2у2, а х3у3=х4у4
Сравниваем х1у1 и х3у3:
x1y1-x3y3=(7-2√6)-2=5-2√6
4<6<6,25→2<√6<2,54<2√6<5-5<-2√6<-40<5-2√6<1Следовательно, 5-2√6>0 или x1y1-x3y3>0, то есть x1y1>x3y3
Получаем, что:
наименьшее произведение: х3у3=2
количество решений = 4
если квадратный трехчлен aх2+bx+c представлен в виде a(х+p)2+q, где p и q — действительные числа, то говорят, что из квадратного трехчлена выделен квадрат двучлена.
покажем на примере как это преобразование делается.
выделим из трехчлена 2x2+12x+14 квадрат двучлена.
вынесем за скобки коэффициент a, т.е. 2:
2
x
2
+
12
x
+
14
=
2
(
x
2
+
6
x
+
7
)
преобразуем выражение в скобках.
для этого представим 6х в виде произведения 2*3*х, а затем прибавим и вычтем 32. получим:
2
(
x
2
+
2
⋅
3
⋅
x
+
3
2
−
3
2
+
7
)
=
2
(
(
x
+
3
)
2
−
3
2
+
7
)
=
=
2
(
(
x
+
3
)
2
−
2
)
=
2
(
x
+
3
)
2
−
4
т.о. мы выделили квадрат двучлена из квадратного трехчлена, и показоли, что:
2
x
2
+
12
x
+
14
=
2
(
x
+
3
)
2
−
4
разложение на множители квадратного трехчлена
если квадратный трехчлен aх2+bx+c представлен в виде a(х+n)(x+m), где n и m — действительные числа, то говорят, что выполнена операция разложения на множители квадратного трехчлена.
покажем на примере как это преобразование делается.
разложим квадратный трехчлен 2x2+4x-6 на множители.
вынесем за скобки коэффициент a, т.е. 2:
2
x
2
+
4
x
−
6
=
2
(
x
2
+
2
x
−
3
)
преобразуем выражение в скобках.
для этого представим 2х в виде разности 3x-1x, а -3 в виде -1*3. получим:
=
2
(
x
2
+
3
⋅
x
−
1
⋅
x
−
1
⋅
3
)
=
2
(
x
(
x
+
3
)
−
1
⋅
(
x
+
3
)
)
=
=
2
(
x
−
1
)
(
x
+
3
)
т.о. мы разложили на множители квадратный трехчлен, и показоли, что:
2
x
2
+
4
x
−
6
=
2
(
x
−
1
)
(
x
+
3
)
заметим, что разложение на множители квадратного трехчлена возможно только тогда, когда, квадратное уравнение, соответсвующее этому трехчлену имеет корни.
т.е. в нашем случае разложить на множители трехчлен 2x2+4x-6 возможно, если квадратное уравнение 2x2+4x-6 =0 имеет корни. в процессе разложения на множители мы установили, что уравнение 2x2+4x-6 =0 имеет два корня 1 и -3, т.к. при этих значениях уравнение 2(x-1)(x+3)=0 обращается в верное равенство