Угол между осями координат 90°, поэтому треугольник получиться прямоугольным. Найти площадь круга можно через радиус, а радиус, описанной окружности около прямоугольного треугольника, можно найти через его гипотенузы (половина от гип.) т.к. угол в 90° опирается на диаметр, то есть гипотенуза это диаметр. Так вот нам надо найти гипотенузы этого треугольника, а именно её половину. Для этого найдём точки пересечения прямой с осями координат, а затем расстояние между ними, это и будет гипотенуза, дальше думаю понятно.
Русский термин дробь, как и его аналоги в других языках, происходит от лат. fractura, который, в свою очередь, является переводом арабского термина с тем же значением: ломать, раздроблять. Фундамент теории обыкновенных дробей заложили греческие и индийские математики. Впервые в Европе данный термин употребил Леонардо Пизанский (1202). Поначалу европейские математики оперировали только с обыкновенными дробями, а в астрономии — с шестидесятеричными. Полноценная теория обыкновенных дробей и действий с ними сложилась в XVI веке (Тарталья, Клавиус) Десятичные дроби впервые встречаются в Китае примерно с III века н. э. при вычислениях на счётной доске (суаньпань) . В письменных источниках десятичные дроби ещё некоторое время изображали в традиционном (не позиционном) формате, но постепенно позиционная система вытеснила традиционную [3]. Персидский математик и астроном Джамшид Гияс-ад-дин ал-Каши (1380—1429) в трактате «Ключ арифметики» объявил себя изобретателем десятичных дробей, хотя они встречались в трудах Ал-Уклидиси, жившего на 5 веков раньше В Европе первые десятичные дроби ввёл Иммануил Бонфис около 1350 года, но широкое распространение они получили только после появления сочинения Симона Стевина «Десятая»
Угол между осями координат 90°, поэтому треугольник получиться прямоугольным. Найти площадь круга можно через радиус, а радиус, описанной окружности около прямоугольного треугольника, можно найти через его гипотенузы (половина от гип.) т.к. угол в 90° опирается на диаметр, то есть гипотенуза это диаметр. Так вот нам надо найти гипотенузы этого треугольника, а именно её половину. Для этого найдём точки пересечения прямой с осями координат, а затем расстояние между ними, это и будет гипотенуза, дальше думаю понятно.