Последовательность: 3) Искомое двухзначное число ab имеет а десятков и b единиц; 4) Между цифрой единиц и цифрой десятков вставим нуль, получим число; 2) Его можно записать в виде 100a + b; 1) Получаем уравнение 100a + b = 9∙(10a + b), отсюда ; а =4b÷5.
а =4b÷5 a = 0.8b Подберем возможные значения b. 0.8b = 1 a = 1; b = 1/0.8 = 1.25 - не подходит. a = 2; b = 2/0.8 = 2,5 - не подходит. a = 3; b = 3/0.8 = 3,75 - не подходит. a = 4; b = 4/0.8 = 5 - удовлетворяет условию. a = 5; b = 5/0.8 = 6,25 - не подходит. a = 6; b = 1/0.8 = 7,5 - не подходит. a = 7; b = 1/0.8 = 8,75 - не подходит. a = 8; b = 1/0.8 = 10 - не подходит. a = 9; b = 1/0.8 = 11,25 - не подходит. ответ: 45.
А) Здесь знаменатель не должен быть равен 0, т.к. на 0 делить нельзя, поэтому х-2≠0 х≠2 Область определения D(f)=(-∞;2)∪(2;∞). б) f(x)=√(x-3)+√(2-x) Подкоренное выражение не может быть отрицательным, поэтому надо найти те х, при которых подкоренное выражение >0 x-3≥0 x≥3 2-x≥0 x≤2 Видим, что х не может быть одновременно больше 3 и меньше 2, для этой функции нет области определения. в) f(x)=√(1-4x-5x^2) Как и в предыдущем примере подкоренное выражение не может быть отрицательным, поэтому можем записать 1-4x-5x^2≥0 Решаем квадратное уравнение -5x^2-4x+1 Находим дискриминант D=b^2-4ac=(-4)^2-4*(-5)*1=16+20=36 Ищем корни x₁=(-b-√D)/2a=(4-6)/-10=1/5 x₂=(-b+√D)/2a=(4+6)/-10=-1 То есть парабола пересекает ось абсцисс в двух точках, а ветви её смотрят вниз (а=-5<0), значит подкоренное выражение >0 на промежутке [-1;1/5] Область определения D(f)=[-1;1/5].
ответ: формула (2), для независимых событий вероятность произведения событий равна произведению вероятностей.
Пошаговое объяснение: