1) Находим первую производную функции: y' = -3x²+12x+36 Приравниваем ее к нулю: -3x²+12x+36 = 0 x₁ = -2 x₂ = 6 Вычисляем значения функции на концах отрезка f(-2) = -33 f(6) = 223 f(-3) = -20 f(3) = 142 ответ: fmin = -33, fmax = 142 2) a) 1. Находим интервалы возрастания и убывания. Первая производная равна f'(x) = - 6x+12 Находим нули функции. Для этого приравниваем производную к нулю - 6x+12 = 0 Откуда: x₁ = 2 (-∞ ;2) f'(x) > 0 функция возрастает (2; +∞) f'(x) < 0функция убывает В окрестности точки x = 2 производная функции меняет знак с (+) на (-). Следовательно, точка x = 2 - точка максимума. б) 1. Находим интервалы возрастания и убывания. Первая производная. f'(x) = -12x2+12x или f'(x) = 12x(-x+1) Находим нули функции. Для этого приравниваем производную к нулю 12x(-x+1) = 0 Откуда: x1 = 0 x2 = 1 (-∞ ;0) f'(x) < 0 функция убывает (0; 1) f'(x) > 0 функция возрастает (1; +∞) f'(x) < 0 функция убывает В окрестности точки x = 0 производная функции меняет знак с (-) на (+). Следовательно, точка x = 0 - точка минимума. В окрестности точки x = 1 производная функции меняет знак с (+) на (-). Следовательно, точка x = 1 - точка максимума.
3. Исследуйте функцию с производной f(x)=2x^2-3x-1 1. D(y) = R 2. Чётность и не чётность: f(-x) = 2(-x)² - 3*(-x) - 1 = 2x² + 3x - 1 функция поменяла знак частично. Значит она ни чётная ни нечётная 3. Найдём наименьшее и наибольшее значение функции Находим первую производную функции: y' = 4x-3 Приравниваем ее к нулю: 4x-3 = 0 x₁ = 3/4 Вычисляем значения функции f(3/4) = -17/8 Используем достаточное условие экстремума функции одной переменной. Найдем вторую производную: y'' = 4 Вычисляем: y''(3/4) = 4>0 - значит точка x = 3/4 точка минимума функции. 4. Найдём промежутки возрастания и убывания функции: 1. Находим интервалы возрастания и убывания. Первая производная равна f'(x) = 4x-3 Находим нули функции. Для этого приравниваем производную к нулю 4x-3 = 0 Откуда: x₁ = 3/4 (-∞ ;3/4) f'(x) < 0 функция убывает (3/4; +∞) f'(x) > 0 функция возрастает В окрестности точки x = 3/4 производная функции меняет знак с (-) на (+). Следовательно, точка x = 3/4 - точка минимума
45 = 5 * 9 1) число делится на на 45 без остатка, если сумма его цифр делится без остатка на 5 и на 9 2) Число делится на 5, если последняя его цифра 5 или 0. Поэтому наше число будет заканчиваться на 5 или 0 3) Число делится на 9, если сумма его цифр делится на 9.
Подбираем число: Допустим, оно заканчивается на 5, тогда мы имеем 31**5 складываем цифры: 3+1+5=9 ---> делится на 9, значит можно вместо звездочек поставить два ноля (получим число 31005, которое делится на 45), но в условии сказано, что цифры должны быть разные. Берем другое число, которое делится на 9---> 18. Нужно, чтобы сумма цифр нашего числа была равна 18 3+1+9+0+5=18 полученное число 31905 проверим: 31905 : 45 = 709 подходит Также подойдет число 31095 : 45 = 691
или 3+1+2+7+5=18 подходящие числа: 31275 31725
По тому же принципу можно подобрать числа, которые заканчиваются на 0. 3+1+5+9+0=18, подойдут числа 31590 и 31950 3+1+6+8+0=18, подойдут числа 31680 и 31860
у=(х+3)³+3 - ее график - это график ф-ции у=х³, но сдвинутый
на 3 влево и поднятый на 3 - рис.2
у=(х-3)³-3 - это у=х³, но сдвинутый на 3 вправо
и опущенный на 3 - рис.1.
График ф-ции у=х³ проходит через начало координат.