М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
sasha1027821
sasha1027821
06.01.2023 19:55 •  Математика

Решить дифф.уравнения-y'' + 8 y'+25y=2sin 3x

👇
Ответ:
sajidabonu101220071
sajidabonu101220071
06.01.2023

y'' + 8y' + 25y = 2\sin 3x

Имеем линейное неоднородное дифференциальное уравнение (ЛНДУ) с постоянными коэффициентами.

Общее решение этого уравнения: y = y^{*} + \widetilde{y}

1) \ y^{*} — общее решение соответствующего однородного уравнения:

y'' + 8y' + 25y = 0

Воспользуемся методом Эйлера. Подстановка: y = e^{kx}.

Тогда получим характеристическое уравнение:

(e^{kx})'' + 8(e^{kx})' + 25e^{kx} = 0

k^{2}e^{kx} + 8ke^{kx} + 25e^{kx} = 0 \ \ \ |:e^{kx}

k^{2} + 8k + 25 = 0

D = 8^{2} - 4 \cdot 1 \cdot 25 = 64 - 100 = -36

k_{1,2} = \dfrac{-8 \pm \sqrt{36}}{2 \cdot 1} = \dfrac{-8 \pm \sqrt{36} \cdot \sqrt{-1}}{2} = \dfrac{-8\pm 6i}{2} = -4 \pm 3i

Имеем комплексно-сопряженные корни вида \alpha \pm \beta i

Здесь \alpha =-4 и \beta =3

Тогда \overline{y}_{1} = e^{(-4 + 3i)x} и \overline{y}_{2} = e^{(-4 - 3i)x}

Используем формулу Эйлера: e^{i\varphi} = \cos \varphi + i\sin \varphi

Значит, \overline{y}_{1} = e^{(-4 + 3i)x} = e^{-4x} \cdot e^{3ix} = e^{-4x}(\cos 3x + i\sin 3x) = e^{-4x} \cos 3x + ie^{-4x}\sin 3x

Таким образом, фундаментальная система решений: y_{1} = e^{-4x}\cos 3x, \ y_{2} = e^{-4x}\sin 3x — линейно независимые функции.

Общее решение: y^{*} = C_{1}y_{1} + C_{2}y_{2} = C_{1} e^{-4x}\cos 3x + C_{2}e^{-4x}\sin 3x

2) \ \widetilde{y} — частное решение ЛНДУ с постоянными коэффициентами. Для его нахождения используется метод подбора вида частного решения по виду правой части уравнения.

Правая часть второго типа: f(x) = e^{\alpha x}\left(P_{s}(x)\cos \beta x + Q_{m}(x)\sin \beta x \right)

В нашем уравнении \alpha = 0, \ \beta = 3 и не совпадает корнем однородного ЛДУ, а именно: \alpha =-4 и \beta =3, поэтому \widetilde{y} = A\cos 3x + B\sin 3x, где A — неизвестный коэффициент, который нужно найти.

Здесь \widetilde{y}' = -3A\sin 3x + 3B\cos 3x и \widetilde{y}'' = -9A\cos 3x - 9B\sin 3x

Подставим \widetilde{y}, \ \widetilde{y} ' и \widetilde{y} '' в заданное уравнение со специальной правой частью:

-9A\cos 3x - 9B\sin 3x + 8 \cdot (-3A\sin 3x + 3B\cos 3x) + \\+ 25(A\cos 3x + B\sin 3x) = 2\sin 3x

(16 A + 24B)\cos 3x + (-24A + 16B)\sin 3x = 0\cos 3x + 2\sin 3x

\displaystyle \left \{ {{16A + 24B = 0, \ } \atop {-24A + 16B = 2}} \right.

+ \displaystyle \left \{ {{48A + 72B = 0, \ } \atop {-48A + 32B = 4}} \right.

104 B = 4; \ B = \dfrac{4}{104} = \dfrac{1}{26}

16A + 24 \cdot \dfrac{1}{26} = 0; \ 16A = -\dfrac{12}{13} ; \ A = -\dfrac{3}{52}

Частное решение: \widetilde{y} = -\dfrac{3}{52} \cos 3x + \dfrac{1}{26} \sin 3x

Общее решение заданного дифференциального уравнения:

y = y^{*} + \widetilde{y} =C_{1} e^{-4x}\cos 3x + C_{2}e^{-4x}\sin 3x -\dfrac{3}{52} \cos 3x + \dfrac{1}{26} \sin 3x

ответ: y =C_{1} e^{-4x}\cos 3x + C_{2}e^{-4x}\sin 3x -\dfrac{3}{52} \cos 3x + \dfrac{1}{26} \sin 3x

4,5(5 оценок)
Открыть все ответы
Ответ:
киса822
киса822
06.01.2023
1) x = (-2x-27)/(x-14)
x + (2x+27)/(x-14) = 0
(x^2 - 14x + 2x + 27)/(x-14) = 0
x^2 - 12x + 27 = 0
(x - 3)(x - 9) = 0
x1 = 3; x2 = 9
ответ: 9

2) √(3x^2+12x+1) = x+3
3x^2 + 12x + 1 = (x+3)^2 = x^2 + 6x + 9
2x^2 + 6x - 8 = 2(x^2 + 3x - 4) = 0
2(x + 4)(x - 1) = 0
ответ: x1 = -4; x2 = 1

3) y = 2x^2
Эта функция имеет вершину (минимум) в точке x = 0.
Она возрастает при x > 0
Минимальное значение этой функции y(0) = 0
Максимальное значение y(2) = 2*2^2 = 2*4 = 8
ответ: 8

4) 2sin^2 x - cos x - 1 = 0
2 - 2cos^2 x - cos x - 1 = 0
-2cos^2 x - cos x + 1 = 0
Делим все на -1 и делаем замену cos x = y
2y^2 + y - 1 = 0
(y + 1)(2y - 1) = 0
y1 = cos x = -1; x1 = pi + 2pi*n
y2 = cos x = 1/2; x2 = +-pi/3 + 2pi*k
Корни на отрезке [3pi; 4pi]
ответ: x1 = 3pi; x2 = 4pi - pi/3 = 11pi/3

5) 2*4^(x+1) - 2^(x+1) - 1 = 0
2*4*4^x - 2*2^x - 1 = 0
Замена 2^x = y > 0 при любом x, тогда 4^x = y^2
8y^2 - 2y - 1 = 0
(2y - 1)(4y + 1) = 0
y1 = 2^x = -1/4 < 0 - не подходит
y2 = 2^x = 1/2 = 2^(-1)
ответ: x = -1
4,4(34 оценок)
Ответ:
SKoteickaЗ
SKoteickaЗ
06.01.2023
1) x = (-2x-27)/(x-14)
x + (2x+27)/(x-14) = 0
(x^2 - 14x + 2x + 27)/(x-14) = 0
x^2 - 12x + 27 = 0
(x - 3)(x - 9) = 0
x1 = 3; x2 = 9
ответ: 9

2) √(3x^2+12x+1) = x+3
3x^2 + 12x + 1 = (x+3)^2 = x^2 + 6x + 9
2x^2 + 6x - 8 = 2(x^2 + 3x - 4) = 0
2(x + 4)(x - 1) = 0
ответ: x1 = -4; x2 = 1

3) y = 2x^2
Эта функция имеет вершину (минимум) в точке x = 0.
Она возрастает при x > 0
Минимальное значение этой функции y(0) = 0
Максимальное значение y(2) = 2*2^2 = 2*4 = 8
ответ: 8

4) 2sin^2 x - cos x - 1 = 0
2 - 2cos^2 x - cos x - 1 = 0
-2cos^2 x - cos x + 1 = 0
Делим все на -1 и делаем замену cos x = y
2y^2 + y - 1 = 0
(y + 1)(2y - 1) = 0
y1 = cos x = -1; x1 = pi + 2pi*n
y2 = cos x = 1/2; x2 = +-pi/3 + 2pi*k
Корни на отрезке [3pi; 4pi]
ответ: x1 = 3pi; x2 = 4pi - pi/3 = 11pi/3

5) 2*4^(x+1) - 2^(x+1) - 1 = 0
2*4*4^x - 2*2^x - 1 = 0
Замена 2^x = y > 0 при любом x, тогда 4^x = y^2
8y^2 - 2y - 1 = 0
(2y - 1)(4y + 1) = 0
y1 = 2^x = -1/4 < 0 - не подходит
y2 = 2^x = 1/2 = 2^(-1)
ответ: x = -1
4,5(38 оценок)
Новые ответы от MOGZ: Математика
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ